

No.: 24-XM2412110003

MOB

A	Jan 7,2025	Damon	Bryan	Peter
Version	Date	Prepared	Reviewed	Approved

Address: No. 88 Qixin Road, NETDA, Nantong, Jiangsu, P.R. China, 226009 Tel:+86 513 8010 0986 | E-mail: sales@zttgroup.com | Website: www.zttgroup.com

Product datasheet

1. Product description :

MOB(2), ZTT-HH02, with 2 SC/APC adapters and wall mounted accessories. MOB(4), ZTT-HH04, with 4 SC/APC adapters and wall mounted accessories. MOB(6), ZTT-HH06, with 6 SC/APC adapters and wall mounted accessories.

2. General Properties:

3. Technical Parameter:

- Color: grey(RAL7035)
- Material: PC+ABS
- Protection level up to IP54、IK09
- UV resistant
- Comply with UL94-V0
- Installation method: wall-mounted.
- Dimension: 140*165*40mm

Note: The nominal size may vary ±5mm

4. SM, Simplex Adapter SC/APC

4.1 General properties:

4.2 Technical characteristics:

Туре	SC/APC
Insert loss (dB)	<0.20
Repeatability (dB)	≤0.20
Interchangeability (dB)	≤0.20
Material of sleeve	Ceramic
Operating temperature ($^{\circ}\!C$)	-25~+70
Storage temperature ($^{\circ}$ C)	-25~+70
Industrial standard	IEC 61754-04

5. RFID and Labelling

- An NFC standard RFID (ISO-IEC 14443A) can be placed within the FB to allow its traceability and uniqueness within PPC Network Inventory systems.RFID is positioned on the inside of the cover, right behind the PPC's logo.
- The production lot of each single component and the corresponding supplier will be labelled into the FB. Labelling must specify:

a. Supplier acronym.

- b. Lot number or similar identification system of the production series.
- The operating manuals will be pasted inside of the cover in the form of QR code.
- FB external cover will be labelled with 1 Barcode bearing the unique identification number of the FB.
- FB external cover will be labelled PPC color logo.

6. Packaging

• Single box (dimensions right for 1pc)

• Multiple carton box (dimensions right for X pcs)

• Pallet size and quantity of boxes (dimensions right for X pcs)

7. Package list

No.	Description	Unit	MOB 2	MOB 4	MOB 6
1	Box	set	1	1	1
2	Cable tie	pcs	4	8	12
3	Кеу	рс	1	1	1
4	Adapter	pcs	2	4	6
5	Wall mounted accessories	set	1	1	1

Instruction Manual

1. Description :

The equipment is used as a termination point for the feeder cable to connect with drop cable in FTTx communication network system. The fiber splicing, splitting, distribution can be done in this box, and meanwhile it provides solid protection and management for the FTTx network building.

2. Features :

- Total enclosed structure.
- Material: PC+ABS, protection level up to IP54.
- Clamping for feeder cable and drop cable, fiber splicing, fixation, storage, distribution...etc all in one.
- Cable, pigtails, patch cords are running through own path without disturbing each other, SC/LC/ adaptor installation, easy maintenance.
- MOB can be installed by the way of wall-mounted , suitable for both indoor and outdoor uses.

3. Specification :

1. Environmental requirement

Working temperature: -40 °C ~+60 °C Relative humidity: ≤95% Atmospheric pressure: 70KPa~106Kpa Life of insertion and extraction: >1000 times

4. Product cable ways :

5. Installation :

1. Wall-mounted installation

Drill 4 holes over the wall based on the size in table 1, place the expansion bolt , place the box to match up the holes and use bolt to fasten.(Pic 3)

Pic 3 Wall mounted installation

7. Accessories :

- 1. Users' Manual*1
- 2. Accessories Bag * 1

Technical datasheet of the passive components used

ig.ul.com									
PROSPECTOR® View additional material i pr Component - Plastics Guide Information	CLICK TO CONTINUE information including performance and rocessing data	The information presented on the UL Prospector datasheet was acquired by UL Prospector from the producer of the material. UL Prospector makes substantial efforts to assure the accuracy of this data. However, UL Prospector assumes no responsibility for the data values and strongly encourages that upon final material selection, data points are validated with the material supplier. E526125							
Lihuayi Weiyuan (No.208, Lishi Road, Lijin C	Chemical Co Ltd County, Dongying City, Shandong Pro	vince, P.R.China, DO	NGYING CITY	SHANDONG SHANE	OONG 257336 CN				
WY-DZ001(+) Polycarbonate (PC)/Acr	vlonitrile Butadiene Stvrene (ABS)), furnished as pelle	ets						
	Min Thk	Flamo			DTI	DTI	DTI		
Color	(mm)	Class	HWI	HAI	Elec	Imp	Str		
NC	1.5	V-0	0	-	60	60	60		
	3.0	V-0	0	-	60	60	60		
Compo	arativo Tracking Indov (CTI):		Incline	d Diano Tracking (I					
Compa	Dielectric Strength (k)/(mm):		Inclined Plane Tracking (IPT) kV: -						
1000 01 010100	Dielectric Strength (Kwhini)	Volume Resistivity (10° onm-cm): -							
	And Translation Date (IN/TD).								
(+) - May be blank ANSI/UL 94 small-scale t farmability of plastic	Arc Tracking Rate (HVTR): - Dimensional Change (%): - t, or replaced by one digit number 0-9 to n est data does not pertain to building mate materials used in the components and particular.	F epresent customer code trials, furnishings and re	Surface Res High Volt, Low	istivity (10 ^x ohms/s Current Arc Resis (NSI/UL 94 small-scale ((D495): -	solely for de	etermining the		
High-Voltage (+) - May be blank ANSI/UL 94 small-scale tr flammability of plastic r Report Date: 2022-07-14	Arc Tracking Rate (HVTR): - Dimensional Change (%): - , or replaced by one digit number 0-9 to n est data does not pertain to building mate materials used in the components and pa	F epresent customer code rials, furnishings and re rts of end-product devic	Surface Res High Volt, Low e. Hated contents. A wes and appliance	istivity (10 ^x ohms/s Current Arc Resis NSI/UL 94 small-scale is, where the acceptabil	quare): - (D495): - test data is intended s lity of the combination	solely for de n is determi	etermining the ned by UL.		
(+) - May be blank (+) - May be blank ANSI/UL 94 small-scale tr flammability of plastic r Report Date: 2022-07-14 Last Revised: 2022-07-13	Arc Tracking Rate (HVTR): - Dimensional Change (%): - , or replaced by one digit number 0-9 to n est data does not pertain to building mate materials used in the components and pa	H epresent customer code vrials, furnishings and re rts of end-product devic	Surface Res High Volt, Low a. elated contents. A xes and appliance © 2022 UL LLC	istivity (10 ^x ohms/s Current Arc Resis NSI/UL 94 small-scale s, where the acceptabil	quare): - (D495): - test data is intended s lity of the combination	solely for de n is determi	etermining the ned by UL.		
(+) - May be blank (+) - May be blank ANSI/UL 94 small-scale tr flammability of plastic r Report Date: 2022-07-14 Last Revised: 2022-07-13	Arc Tracking Rate (HVTR): - Dimensional Change (%): - , or replaced by one digit number 0-9 to n est data does not pertain to building mate materials used in the components and pa ds	H epresent customer code vrials, furnishings and re rts of end-product devic	Surface Res High Volt, Low e. Hated contents. A res and appliance	istivity (10 ^x ohms/s Current Arc Resis (NSI/UL 94 small-scale s, where the acceptabil	quare): - (D495): - test data is intended s lity of the combination	solely for de n is determi	etermining the ned by UL.		
(+) - May be blank (+) - May be blank ANSI/UL 94 small-scale to flammability of plastic r Report Date: 2022-07-14 Last Revised: 2022-07-13 IEC and ISO Test Methoo Test Name	Arc Tracking Rate (HVTR): - Dimensional Change (%): - , or replaced by one digit number 0-9 to n est data does not pertain to building mate materials used in the components and pa 15	H epresent customer code vrials, furnishings and re rts of end-product devic of Test Method	Surface Res High Volt, Low a. Hated contents. A ses and appliance 2022 UL LLC	istivity (10 ^x ohms/s Current Arc Resis of NSI/UL 94 small-scale of s, where the acceptabil Units	quare): - (D495): - test data is intended s lity of the combination	solely for de n is determi	etermining the ned by UL.		
(+) - May be blank (+) - May be blank ANSI/UL 94 small-scale to flammability of plastic r Report Date: 2022-07-14 Last Revised: 2022-07-13 IEC and ISO Test Methoo Test Name Flammability	Arc Tracking Rate (HVTR): - Dimensional Change (%): - , or replaced by one digit number 0-9 to n est data does not pertain to building mate materials used in the components and pa 1s	F epresent customer code trials, furnishings and re rts of end-product devic Test Method IEC 60695-11-10	Surface Res figh Volt, Low a. lated contents. A lated contents. A sea and appliance 2022 UL LLC	Istivity (10 ^x ohms/s Current Arc Resis of NSI/UL 94 small-scale is, where the acceptabil Units Class (color)	quare): - (D495): - lest data is intended s lity of the combination Thk (m 1.5	solely for den is determi	etermining the ned by UL. SQU® Value V-0 (NC)		
(+) - May be blank (+) - May be blank (ANSI/UL 94 small-scale t flammability of plastic Report Date: 2022-07-14 Last Revised: 2022-07-13 IEC and ISO Test Method Test Name Flammability	Arc Tracking Rate (HVTR): - Dimensional Change (%): - , or replaced by one digit number 0-9 to n est data does not pertain to building mate materials used in the components and pa ds	F epresent customer code trials, furnishings and re rts of end-product devic (Test Method IEC 60695-11-10	Surface Res High Volt, Low a. Hated contents. A res and appliance 2022 UL LLC	istivity (10 ^x ohms/s Current Arc Resis (NSI/UL 94 small-scale i s, where the acceptabil Units Class (color)	quare): - (D495): - lity of the combination Thk (m 1.5 3.0	solely for de n is determi nm)	etermining the ned by UL. Value V-0 (NC) V-0 (NC)		
(+) - May be blank ANSI/UL 94 small-scale ti flammability of plastic Report Date: 2022-07-14 Last Revised: 2022-07-13 IEC and ISO Test Method Test Name Flammability Glow-Wire Flammability (C	 Arc Tracking Rate (HVTR): - Dimensional Change (%): - , or replaced by one digit number 0-9 to n est data does not pertain to building mate materials used in the components and pa Is GWFI) 	F epresent customer code rials, furnishings and re rits of end-product devic Test Method IEC 60695-11-10 IEC 60695-2-12	Surface Res High Volt, Low a. Iated contents. A ses and appliance © 2022 UL LLC	istivity (10 ^x ohms/s Current Arc Resis (NS/UL 94 small-scale is, where the acceptabil Units Class (color) °C	quare): - (D495): - lity of the combination Thk (m 1.5 3.0	solely for da n is determi nm)	Value V-0 (NC) V-0 (NC) V-0 (NC)		
(+) - May be blank ANSI/UL 94 small-scale ti flammability of plastici Report Date: 2022-07-14 Last Revised: 2022-07-13 IEC and ISO Test Method Test Name Flammability Glow-Wire Flammability (C Glow-Wire Ignition (GWIT)	 Arc Tracking Rate (HVTR): - Dimensional Change (%): - , or replaced by one digit number 0-9 to n est data does not pertain to building mate materials used in the components and pa Is GWFI) ,	F epresent customer code rials, furnishings and re rits of end-product devic Test Method IEC 60695-11-10 IEC 60695-2-12 IEC 60695-2-13	Surface Res digh Volt, Low e. lated contents. A lated contents. A es and appliance	Istivity (10 ^x ohms/s Current Arc Resis of NS/UL 94 small-scale is, where the acceptabil Units Class (color) °C °C	quare): - (D495): - test data is intended t iity of the combination Thk (m 1.5 3.0 -	solely for dr n is determi 1m)	Value V-0 (NC) -		
(+) - May be blank (+) - May be blank ANSI/UL 94 small-scale ti flammability of plastic Report Date: 2022-07-14 Last Revised: 2022-07-13 IEC and ISO Test Method Test Name Flammability Glow-Wire Flammability (C Glow-Wire Ignition (GVIIT) IEC Comparative Tracking	Arc Tracking Rate (HVTR): - Dimensional Change (%): - , or replaced by one digit number 0-9 to n est data does not pertain to building mate materials used in the components and pa	F epresent customer code rials, furnishings and re rits of end-product devic Test Method IEC 60695-11-10 IEC 60695-2-12 IEC 60695-2-13 IEC 60112	Surface Res High Volt, Low a. Ialated contents. A ses and appliance	Istivity (10 ^x ohms/s Current Arc Resis (NSI/UL 94 small-scale is, where the acceptabil Units Class (color) °C °C Volts (Max) Material Group	quare): - (D495): - lity of the combination Thk (m 1.5 3.0 - -	solely for de n is determi 1m)	Value V-0 (NC) V-0 (NC) V-0 (NC) V-0 (NC) IIIa		
(+) - May be blank (+) - May be blank ANSI/UL 94 small-scale ti flammability of plastic 1 Report Date: 2022-07-14 Last Revised: 2022-07-13 IEC and ISO Test Method Test Name Flammability Glow-Wire Flammability (C Glow-Wire Flammability (C Glow-Wire Ignition (GWIT) IEC Comparative Tracking IEC Ball Pressure	Arc Tracking Rate (HVTR): - Dimensional Change (%): - , or replaced by one digit number 0-9 to r est data does not pertain to building mate materials used in the components and pa	Test Method IEC 60695-212 IEC 60695-213 IEC 60695-213 IEC 60695-22	Surface Res digh Volt, Low e. lated contents. A ess and appliance	Istivity (10 ^x ohms/s Current Arc Resis of NS/UL 94 small-scale is, where the acceptabil Units Class (color) °C °C Volts (Max) Material Group °C	quare): - (D495): - test data is intended t iity of the combination Thk (m 1.5 3.0 - -	solely for de n is determi 1m)	Value V-0 (NC) V-0 (NC) - CTI275 IIIa -		
(+) - May be blank ANSI/UL 94 small-scale to flammability of plastic 1 Report Date: 2022-07-14 Last Revised: 2022-07-13 IEC and ISO Test Method Test Name Flammability Glow-Wire Flammability (C Glow-Wire Flammability (C Glow-Wire Ignition (GWIT) IEC Comparative Tracking IEC Ball Pressure ISO Heat Deflection (1.80	 Arc Tracking Rate (HVTR): - Dimensional Change (%): - , or replaced by one digit number 0-9 to nest data does not pertain to building mate materials used in the components and pa ds GWFI))) Index MPa) 	Test Method IEC 60695-2-12 IEC 60695-2-13 IEC 60695-10-2 ISO 75-2	Surface Res digh Volt, Low a. elated contents. A ess and appliance 2022 UL LLC	istivity (10 ^x ohms/s Current Arc Resis of NS/UL 94 small-scale is s, where the acceptabil Units Class (color) °C °C Volts (Max) Material Group °C °C	quare): - (D495): - test data is intended : ity of the combination Thk (m 1.5 3.0 - - - -	solely for de n is determi nm)	Value V-0 (NC) V-0 (NC) V-0 (T) V-0 (T		
(+) - May be blank ANSI/UL 94 small-scale to flammability of plastici Report Date: 2022-07-14 Last Revised: 2022-07-13 IEC and ISO Test Method Test Name Flammability Glow-Wire Flammability (O Glow-Wire Ignition (GWIT) IEC Comparative Tracking IEC Ball Pressure ISO Heat Deflection (1.80 ISO Tensile Strength	 Arc Tracking Rate (HVTR): - Dimensional Change (%): - , or replaced by one digit number 0-9 to n est data does not pertain to building mate materials used in the components and pa Is GWFI) n Index MPa) 	F epresent customer code vrials, furnishings and re rts of end-product device Test Method IEC 60695-11-10 IEC 60695-2-12 IEC 60695-2-13 IEC 60112 IEC 60695-10-2 ISO 75-2 ISO 527-2	Surface Res High Volt, Low a. Hated contents. A ess and appliance 2022 UL LLC	Istivity (10 ^x ohms/s Current Arc Resis of NSI/UL 94 small-scale is s, where the acceptabil Units Class (color) °C °C Volts (Max) Material Group °C °C MPa	quare): - (D495): - test data is intended s ity of the combination Thk (m 1.5 3.0 - - - -	solely for de n is determi nm)	Value V-0 (NC) V-0 (NC) V-0 (NC) - CTI275 Illa - -		
(+) - May be blank ANSI/UL 94 small-scale t flammability of plaste Report Date: 2022-07-14 Last Revised: 2022-07-13 IEC and ISO Test Method Test Name Flammability Glow-Wire Flammability (C Glow-Wire Ignition (GWIT) IEC Comparative Tracking IEC Ball Pressure ISO Heat Deflection (1.80 ISO Tensile Strength ISO Flexural Strength	 Arc Tracking Rate (HVTR): - Dimensional Change (%): - , or replaced by one digit number 0-9 to n est data does not pertain to building mate materials used in the components and pa ds GWFI)) Index MPa) 	F epresent customer code vrials, furnishings and re rts of end-product device Test Method IEC 60695-11-10 IEC 60695-2-12 IEC 60695-2-13 IEC 60112 IEC 60695-10-2 ISO 75-2 ISO 527-2 ISO 527-2 ISO 178	Surface Res figh Volt, Low a. Idated contents. A es and appliance © 2022 UL LLC	Istivity (10 ^x ohms/s Current Arc Resis of NSI/UL 94 small-scale : s, where the acceptabil Units Class (color) °C °C Voits (Max) Material Group °C °C MPa MPa	quare): - (D495): - test data is intended s ity of the combination Thk (m 1.5 3.0 - - - - - -	solely for de n is determi nm)	Value V-0 (NC) V-0 (NC) V-0 (NC) - CTI275 Illa - - - -		
(+) - May be blank ANSI/UL 94 small-scale t flammability of plastic 1 Report Date: 2022-07-14 Last Revised: 2022-07-13 IEC and ISO Test Method Test Name Flammability Glow-Wire Flammability (C Glow-Wire Flammability (C Glow-Wire Ignition (GWIT) IEC Comparative Tracking IEC Ball Pressure ISO Heat Deflection (1.80 ISO Tensile Strength ISO Tensile Impact	 Arc Tracking Rate (HVTR): - Dimensional Change (%): - , or replaced by one digit number 0-9 to n est data does not pertain to building mate materials used in the components and pa ds GWFI)) Index MPa) 	F epresent customer code rials, furnishings and re rits of end-product devic Test Method IEC 60695-11-10 IEC 60695-2-13 IEC 60695-2-13 IEC 60695-2-13 IEC 60695-10-2 ISO 75-2 ISO 527-2 ISO 178 ISO 8256	Surface Res digh Volt, Low e. lated contents. A ses and appliance	Istivity (10 ^x ohms/s Current Arc Resis of NSI/UL 94 small-scale is s, where the acceptabil Units Class (color) °C °C Volts (Max) Material Group °C °C MPa MPa KJ/m ²	quare): - (D495): - test data is intended t ity of the combination Thk (m 1.5 3.0 - - - - - - - - - - - -	solely for d n is determi	Value V-0 (NC) V-0 (NC) V-0 (NC) - CT1275 Illa - - - -		
(+) - May be blank ANSI/UL 94 small-scale t flammability of plastic Report Date: 2022-07-14 Last Revised: 2022-07-13 IEC and ISO Test Method Test Name Flammability Glow-Wire Flammability (C Glow-Wire Flammability (C Glow-Wire Ignition (GWIT) IEC Comparative Tracking IEC Ball Pressure ISO Heat Deflection (1.80 ISO Tensile Strength ISO Tensile Impact ISO Izod Impact	 Arc Tracking Rate (HVTR): - Dimensional Change (%): - , or replaced by one digit number 0-9 to n est data does not pertain to building mate materials used in the components and pa ds GWFI))) Index MPa) 	F epresent customer code rials, furnishings and re rits of end-product devic Test Method IEC 60695-11-10 IEC 60695-2-13 IEC 60695-2-13 IEC 60695-2-13 IEC 60695-10-2 ISO 75-2 ISO 527-2 ISO 527-2 ISO 178 ISO 8256 ISO 180	Surface Res High Volt, Low a. Ialed contents. A ses and appliance 2022 UL LLC	Istivity (10 ^x ohms/s Current Arc Resis of NSI/UL 94 small-scale is s, where the acceptabil Units Class (color) °C °C Volts (Max) Material Group °C °C MPa MPa KJ/m ² KJ/m ²	quare): - (D495): - Itest data is intended t ity of the combination Thk (m 1.5 3.0 - - - - - - - - - - - - - - - - - - -	solely for da n is determi	Value V-0 (NC) V-0 (NC) V-0 (NC) - CTI275 Illa - - - - -		

https://iq.ul.com/ul/cert.aspx?ULID=104580498

1/1

Test Report

No. CANEC1916011101

Date: 30 Aug 2019

Page 1 of 7

SHEN ZHEN MEI XING NEW MATERIAL CO., LTD

ROOM502 WEST OF NEW BUS STATION, SONGGANG STREET, BAOAN DISTRICT, SHENZHEN CHINA

The following sample(s) was/were submitted and identified on behalf of the clients as : PLEASE SEE REMARK

SGS Job No. :	CP19-044646 - SZ
Date of Sample Received :	14 Aug 2019
Testing Period :	14 Aug 2019 - 20 Aug 2019
Test Requested :	Selected test(s) as requested by client.
Test Method :	Please refer to next page(s).
Test Results :	Please refer to next page(s).
Conclusion :	Based on the performed tests on submitted sample(s), the results of Lead, Mercury, Cadmium, Hexavalent chromium, Polybrominated biphenyls (PBBs), Polybrominated diphenyl ethers (PBDEs) and Phthalates such as Bis(2-ethylhexyl) phthalate (DEHP), Butyl benzyl phthalate (BBP), Dibutyl phthalate (DBP), and Diisobutyl phthalate (DIBP) comply with the limits as set by RoHS Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU.

Signed for and on behalf of SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Jessieli

Jessie Li Approved Signatory

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document is not exonerate parties to a superarance of this document is unlawful and obligations under the transaction forcuments. This document cannot be erpoduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested . Attention: To check the authenticity of testing //specificate.please contact us at telephone: (86-755) 8307 1443, or email: <u>Ch. Docchek Bass.com</u>. [Webub RukStrabel State Gass.com]

中国 · 广州 · 经济技术开发区科学城科珠路198号 邮编: 510663 t (86-20) 82155555 f (86-20) 82075113 e sgs.china@sgs.com Member of the SGS Group (SGS SA)

JUJ						
Test Report	No. CANEC	19160111	01	Date: 3	0 Aug 2019	Page 2 of 7
Test Results :						
Test Part Description :						
Specimen No. SGS Sa SN1 CAN19-1	ample ID Descrip 60111.001 Red pov	tion wder				
Remarks :						
(1) 1 ma/ka = 1 r	nm = 0.0001%					
(2) MDL = Metho	d Detection Limit					
(2) ND = Not Do						
(4) - – Not Reg	ulateu					
Test Method : With refere 62321-6:20	nce to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 3:2017, ar	2017, IEC nalyzed by	62321-5:2 / ICP-OES	013, IEC 6232 , UV-Vis and	21-7-2:2017,IEC GC-MS.
Test Method : With refere 62321-6:20 <u>Test Item(s)</u>	nce to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 2017, ar <u>Limit</u>	2017, IEC nalyzed by <u>Unit</u>	62321-5:2 / ICP-OES <u>MDL</u>	013, IEC 6232 , UV-Vis and <u><i>001</i></u>	21-7-2:2017,IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd)	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 3:2017, ar <u>Limit</u> 100	2017, IEC nalyzed by <u>Unit</u> mg/kg	62321-5:2 / ICP-OES <u>MDL</u> 2	013, IEC 6232 , UV-Vis and <u><i>001</i></u> ND	21-7-2:2017,IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb)	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 3:2017, ar <u>Limit</u> 100 1,000	2017, IEC halyzed by <u>Unit</u> mg/kg mg/kg	62321-5:2 / ICP-OES <u>MDL</u> 2 2	013, IEC 6232 , UV-Vis and <u><i>001</i></u> ND ND	21-7-2:2017,IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb) Mercury (Hg)	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 3:2017, ar <u>Limit</u> 100 1,000 1,000	2017, IEC halyzed by <u>Unit</u> mg/kg mg/kg mg/kg	62321-5:2 / ICP-OES <u>MDL</u> 2 2 2 2	013, IEC 6232 , UV-Vis and <u>001</u> ND ND ND	21-7-2:2017 , IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb) Mercury (Hg) Hexavalent Chromium (CrVI	ence to IEC 62321-4:2 015 and IEC 62321-8)	2013+A1:2 2017, ar <u>Limit</u> 100 1,000 1,000	2017, IEC halyzed by <u>Unit</u> mg/kg mg/kg mg/kg mg/kg	62321-5:2 / ICP-OES <u>MDL</u> 2 2 2 2 8	013, IEC 6232 , UV-Vis and <u>001</u> ND ND ND ND	21-7-2:2017 , IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb) Mercury (Hg) Hexavalent Chromium (CrVI Sum of PBBs	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 2017, ar <u>Limit</u> 100 1,000 1,000 1,000 1,000	2017, IEC halyzed by <u>Unit</u> mg/kg mg/kg mg/kg mg/kg	62321-5:2 / ICP-OES <u>MDL</u> 2 2 2 8 -	013, IEC 6232 , UV-Vis and ND ND ND ND ND ND	21-7-2:2017 , IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb) Mercury (Hg) Hexavalent Chromium (CrVI Sum of PBBs Monobromobiphenyl	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 :2017, ar <u>Limit</u> 100 1,000 1,000 1,000 1,000	2017, IEC halyzed by <u>Unit</u> mg/kg mg/kg mg/kg mg/kg mg/kg	62321-5:2 / ICP-OES <u>MDL</u> 2 2 2 2 8 - 5	013, IEC 6232 , UV-Vis and ND ND ND ND ND ND ND	21-7-2:2017 , IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb) Mercury (Hg) Hexavalent Chromium (CrVI) Sum of PBBs Monobromobiphenyl Dibromobiphenyl	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 :2017, ar Limit 100 1,000 1,000 1,000 - -	2017, IEC halyzed by <u>Unit</u> mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	62321-5:2 (ICP-OES) <u>MDL</u> 2 2 2 2 8 - 5 5 5	013, IEC 6232 , UV-Vis and ND ND ND ND ND ND ND ND	21-7-2:2017 , IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb) Mercury (Hg) Hexavalent Chromium (CrVI, Sum of PBBs Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 :2017, ar <u>Limit</u> 100 1,000 1,000 1,000 - - -	2017, IEC halyzed by <u>Unit</u> mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	62321-5:2 (ICP-OES) <u>MDL</u> 2 2 2 2 8 - 5 5 5 5	013, IEC 6232 , UV-Vis and ND ND ND ND ND ND ND ND ND	21-7-2:2017 , IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb) Mercury (Hg) Hexavalent Chromium (CrVI Sum of PBBs Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Reatabromobiphenyl	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 :2017, ar <u>Limit</u> 100 1,000 1,000 1,000 - - - -	2017, IEC halyzed by <u>Unit</u> mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	62321-5:2 / ICP-OES <u>MDL</u> 2 2 2 8 - 5 5 5 5 5	013, IEC 6232 , UV-Vis and ND ND ND ND ND ND ND ND ND ND	21-7-2:2017 , IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb) Mercury (Hg) Hexavalent Chromium (CrVI Sum of PBBs Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 2017, ar <u>Limit</u> 100 1,000 1,000 1,000 - - - - - -	2017, IEC halyzed by <u>Unit</u> mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	62321-5:2 / ICP-OES <u>MDL</u> 2 2 2 2 8 - 5 5 5 5 5 5 5 5 5 5 5 5 5	013, IEC 6232 , UV-Vis and ND ND ND ND ND ND ND ND ND ND ND	21-7-2:2017 , IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb) Mercury (Hg) Hexavalent Chromium (CrVI Sum of PBBs Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 2017, ar <u>Limit</u> 100 1,000 1,000 1,000 - - - - - - - - -	2017, IEC halyzed by <u>Unit</u> mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	62321-5:2 / ICP-OES <u>MDL</u> 2 2 2 2 8 - 5 5 5 5 5 5 5 5 5 5 5 5 5	013, IEC 6232 , UV-Vis and ND ND ND ND ND ND ND ND ND ND ND ND	21-7-2:2017 , IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb) Mercury (Hg) Hexavalent Chromium (CrVI) Sum of PBBs Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl Hexabromobiphenyl Mexabromobiphenyl Heptabromobiphenyl	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 :2017, ar Limit 100 1,000 1,000 1,000 - - - - - - - - - -	2017, IEC halyzed by <u>Unit</u> mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	62321-5:2 (ICP-OES) <u>MDL</u> 2 2 2 2 8 - 5 5 5 5 5 5 5 5 5 5 5 5 5	013, IEC 6232 , UV-Vis and ND ND ND ND ND ND ND ND ND ND ND ND ND	21-7-2:2017 , IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb) Mercury (Hg) Hexavalent Chromium (CrVI Sum of PBBs Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl Heptabromobiphenyl Octabromobiphenyl Nonabromobiphenyl	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 :2017, ar Limit 100 1,000 1,000 1,000 - - - - - - - - - - - - -	2017, IEC halyzed by Unit mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	62321-5:2 (ICP-OES) <u>MDL</u> 2 2 2 2 8 - 5 5 5 5 5 5 5 5 5 5 5 5 5	013, IEC 6232 , UV-Vis and ND ND ND ND ND ND ND ND ND ND ND ND ND	21-7-2:2017 , IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb) Mercury (Hg) Hexavalent Chromium (CrVI, Sum of PBBs Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl Heptabromobiphenyl Octabromobiphenyl Nonabromobiphenyl Decabromobiphenyl	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 :2017, ar Limit 100 1,000 1,000 1,000 - - - - - - - - - - - - - - - -	2017, IEC halyzed by <u>Unit</u> mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	62321-5:2 (ICP-OES) <u>MDL</u> 2 2 2 2 8 - 5 5 5 5 5 5 5 5 5 5 5 5 5	013, IEC 6232 , UV-Vis and ND ND ND ND ND ND ND ND ND ND ND ND ND	21-7-2:2017 , IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb) Mercury (Hg) Hexavalent Chromium (CrVI) Sum of PBBs Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl Heptabromobiphenyl Octabromobiphenyl Nonabromobiphenyl Dicabromobiphenyl Decabromobiphenyl Sum of PBDEs	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 2017, ar Limit 100 1,000 1,000 1,000 - - - - - - - - - - - - - - - - - -	2017, IEC halyzed by <u>Unit</u> mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	62321-5:2 (ICP-OES) <u>MDL</u> 2 2 2 2 8 - 5 5 5 5 5 5 5 5 5 5 5 5 5	013, IEC 6232 , UV-Vis and <u>001</u> ND ND ND ND ND ND ND ND ND ND	21-7-2:2017 , IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb) Mercury (Hg) Hexavalent Chromium (CrVI Sum of PBBs Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Heptabromobiphenyl Heptabromobiphenyl Nonabromobiphenyl Docabromobiphenyl Decabromobiphenyl Sum of PBDEs Monobromodiphenyl ether	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 2017, ar <u>Limit</u> 100 1,000 1,000 1,000 - - - - - - - - 1,000 - - - - - - - - - - - - -	2017, IEC halyzed by <u>Unit</u> mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	62321-5:2 (ICP-OES <u>MDL</u> 2 2 2 2 8 - 5 5 5 5 5 5 5 5 5 5 5 5 5	013, IEC 6232 , UV-Vis and ND ND ND ND ND ND ND ND ND ND ND ND ND	21-7-2:2017 , IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb) Mercury (Hg) Hexavalent Chromium (CrVI) Sum of PBBs Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl Heptabromobiphenyl Nonabromobiphenyl Doctabromobiphenyl Sum of PBDEs Monobromodiphenyl ether Dibromodiphenyl ether	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 2017, ar Limit 100 1,000 1,000 1,000 - - - - - - - - - 1,000 - - - - - - - - - - - - -	2017, IEC halyzed by <u>Unit</u> mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	62321-5:2 / ICP-OES <u>MDL</u> 2 2 2 8 - 5 5 5 5 5 5 5 5 5 5 5 5 5	013, IEC 6232 , UV-Vis and ND ND ND ND ND ND ND ND ND ND ND ND ND	21-7-2:2017 , IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb) Mercury (Hg) Hexavalent Chromium (CrVI Sum of PBBs Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Heptabromobiphenyl Heptabromobiphenyl Nonabromobiphenyl Doctabromobiphenyl Sum of PBDEs Monobromodiphenyl ether Dibromodiphenyl ether Tribromodiphenyl ether	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 2017, ar Limit 100 1,000 1,000 1,000 - - - - - - - - - - - - -	2017, IEC halyzed by <u>Unit</u> mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	62321-5:2 / ICP-OES <u>MDL</u> 2 2 2 2 8 - 5 5 5 5 5 5 5 5 5 5 5 5 5	013, IEC 6232 , UV-Vis and <u>001</u> ND ND ND ND ND ND ND ND ND ND	21-7-2:2017 , IEC GC-MS .
Test Method : With refere 62321-6:20 <u>Test Item(s)</u> Cadmium (Cd) Lead (Pb) Mercury (Hg) Hexavalent Chromium (CrVI) Sum of PBBs Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Hexabromobiphenyl Heptabromobiphenyl Heptabromobiphenyl Nonabromobiphenyl Dicabromobiphenyl Sum of PBDEs Monobromodiphenyl ether Dibromodiphenyl ether Tribromodiphenyl ether Tribromodiphenyl ether	ence to IEC 62321-4:2 015 and IEC 62321-8	2013+A1:2 2017, ar Limit 100 1,000 1,000 1,000 - - - - - - - - - - - - - - - - - -	2017, IEC halyzed by <u>Unit</u> mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	62321-5:2 (ICP-OES) <u>MDL</u> 2 2 2 2 8 - 5 5 5 5 5 5 5 5 5 5 5 5 5	013, IEC 6232 , UV-Vis and <u>001</u> ND ND ND ND ND ND ND ND ND ND	21-7-2:2017 , IEC GC-MS .

SGS

Test Report	No. CANEC1916011	Date: 3			
<u>Test Item(s)</u>	<u>Limit</u>	<u>Unit</u>	MDL	<u>001</u>	
Hexabromodiphenyl ether	-	mg/kg	5	ND	
Heptabromodiphenyl ether	-	mg/kg	5	ND	
Octabromodiphenyl ether	-	mg/kg	5	ND	
Nonabromodiphenyl ether	-	mg/kg	5	ND	
Decabromodiphenyl ether	-	mg/kg	5	ND	
Dibutyl phthalate (DBP)	1,000	mg/kg	50	ND	
Butyl benzyl phthalate (BBP)	1,000	mg/kg	50	ND	
Bis (2-ethylhexyl) phthalate (DEHP)	1,000	mg/kg	50	ND	
Diisobutyl Phthalates (DIBP)	1,000	mg/kg	50	ND	

Notes :

(1) The maximum permissible limit is quoted from RoHS Directive (EU) 2015/863.IEC 62321 series is equivalent to EN 62321 series

https://www.cenelec.eu/dyn/www/f?p=104:30:1742232870351101::::FSP_ORG_ID,FSP_LANG_ID:1258 637,25

(2) The restriction of DEHP, BBP, DBP and DIBP shall apply to medical devices, including in vitro medical devices, and monitoring and control instruments, including industrial monitoring and control instruments, from 22 July 2021.

(3) The restriction of DEHP, BBP, DBP and DIBP shall not apply to toys which are already subject to the restriction of DEHP, BBP, DBP and DIBP through entry 51 of Annex XVII to Regulation (EC) No 1907/2006.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgc.com/en/Terms-and-Conditions.aspx</u> and, for electronic format document, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgc.com/en/Terms-and-Conditions</u>. Attention is drawn to the limitation of lability, indemnification and jurisdiction issues defined therein. Any holder of this document is a construction. If any the limitation of lability, indemnification and jurisdiction issues defined therein. Any holder of this document is client's instructions. If any. The Company's sole responsibility is to like Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document, find document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faislication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. Attention: To check the authenticity of festing inspection report & certificate, please contact us at telephone: (86-755)8307 1443, or email: CMD hoccheck@ags.com

188 Karbu Road Solenteh Park Guargahou Economic & Technology Development Datrict Quargahou China 510663 t (86-20) 82155555 f (86-20) 82075113 www.sgsgroup.com.cn 中国・广州・经济技术开发区科学城科珠路198号 邮编: 510663 t (86-20) 82155555 f (86-20) 82075113 e sgs.china@egs.com

Member of the SGS Group (SGS SA)

Page 3 of 7

No. CANEC1916011101

Date: 30 Aug 2019

Page 4 of 7

REMARK

Test Report

RED 23 RED 24 RED 41 RED 52 RED 111 RED 122 RED 135 RED 146 RED 149 RED 176 RED 177 RED 178 RED 179 RED 185 RED 195 RED 196 RED 197 RED 202 RED 207 RED 214 RED 220 RED 221 RED 242 RED 254 RED 2020 RED 48:1 RED 48:2 RED 48:3 RED 53:1 RED 57:1 RED E5B RED 166 RED 225 RED 144 RED K4165 RED FBB RED 264 RED 272 RED 195D RED K2915 RED K3580 RED F5RK ROSE 3293 Y/12 Y/13 Y/14 Y/21 Y/33 Y/54 Y/62 Y83 Y/93 Y/95 Y/98 K0961 Y/104 Y/109 Y/110 Y/128 Y/138 Y/139 Y/147 Y/151 Y/155 Y/157 Y/163 Y/168 Y/176 Y/180 Y/183 Y/184 Y/191 Y/192 Y/215 Y/3G Y/6G Y/8G Y/9G Y/10G Y/204 Y/203C Y/2093 Y/2200S Y/2600S Y/3GP Y/5GN Y/1151 Y/G Y/160:1 TY70 TY100 TY300 K2270 K2001K2001FG HX-11 HX-12 HX-13 HX-14 HX-15 HX-16 HX-17 HX-18 HX-19 HX-21 HZ-11 HZ-12 HZ-13 HZ-14 HZ-15 HZ-16 HZ-17 HZ-18 HZ-19 HZ-21 H-6 F01 F07 F11 F13 F15 F19A VQ-D20 VQ-D21 VQ-D22 VQ-D23 VQ-D24 VQ-D25 VQ-D26 VQ-D27 VQ-D28 VQ-D319 VQ-D40 ZQ-11 ZQ-12 ZQ-13 ZQ-14 ZQ-15 ZQ-16 ZQ-17 ZQ-18 ZQ-19 ZVM-11 ZVM-12 ZVM-13 ZVM-14 ZVM-15 ZVM-16 ZVM-17 ZVM-18 ZVM-21 RTS1 RTS3 RTS4 RTS5 RTS6 RTS8 RTS21 RTS27 RTS45 A-4078-6 (Mixture)

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.asps and, for electronic format documents, authorition is drawn to the limitation of liability, indemnification and jurisdiction issues affined thereins. Any holder of this document is attention is drawn to the limitation of liability, indemnification and jurisdiction issues affined thereins. Any holder of this document aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues affined thereins. Any holder of this document aspx. Clients instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced accept in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the scalits shown in his test report relation of the test set of . acception in this test report relation of the test set of . acception in this test report relation of the test set of . acception in the set report of testing inspection report & certificate, please contact us at telephone; (86-75) 8307 1443, or email: Ch.Doccheck@sss.com / testing/inspection.eport & certificate, please contact us at telephone; (86-75) 8207513 www.segsroup.com.cn media in the set report back beindeg/bekomentDishitQuent/bas forG63 t (86-20) 82155555 f (86-20) 8207513 www.segsroup.com.cn media / media / 425745/THZ/EXF¥pixHigh 1985 # \$16663 t (86-20) 82155555 f (86-20) 8207513 e sps.china@ges.com.cn media / media / 425745/THZ/EXF¥pixHigh 1985 # \$16663 t (86-20) 82155555 f (86-20) 8207513 e sps.china@ges.com.cn explana/back

Member of the SGS Group (SGS SA)

Compliance of the product

Doc name	Chapter	Req. #	Product	Details	Compliancy	Notes
Technical Specification-LD MOB	Chap.2	R. 1	LD MOB	LD MOB must allow for an easy operability on field, comprising all the relevant activities required (e.g., installation, cable routing, cable entrance, fiber routing, patching, maintenance).	Compliant	
Technical Specification-LD MOB	Chap.2	R. 2	LD MOB	LD MOB must meet the requirement of both the Directive of the European Parliament and the Commission no. 2006/1907/EC (REACh) and when applicable the requirements of the Directive of the European Parliament and the Commission no. 2011/65/EU (RoHS), as amended on July 22, 2019 (RoHS III).	Compliant	
Technical Specification-LD MOB	Chap.2	R. 3	LD MOB	LD MOB must be engineered to be installed on walls.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 4	LD MOB	LD MOB must support the function of bridging FG access network with Vertical Network.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 5	LD MOB	LD MOB must ensure the connection between the incoming patch cable and the outgoing Building cable guaranteeing the optical continuity.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 6	LD MOB	LD MOB must meet the following environmental requirements:	Compliant	
Technical Specification-LD MOB	Chap.2	R. 6.a	LD MOB	Operating temperature (outdoor): - 40°C ~ + 60°C.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 6.b	LD MOB	Storage temperature: - 25°C ~ + 60°C.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 6.c	LD MOB	Relative humidity: ≤ 95%RH.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 6.d	LD MOB	Atmospheric pressure: 70 ~ 106 kPa.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 7	LD MOB	LD MOB must be robust, reliable and optimized for installation, connection and maintenance activities.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 8	LD MOB	LD MOB design must allow service personnel to easily install, open, close, access and operate the LD MOB itself in case of front access.	Compliant	

Technical Specification-LD MOB	Chap.2	R. 9	LD MOB	LD MOB must ensure adequate mechanical and environmental protection for the contained optical elements, like splices and passive elements (e.g., connectors)	Compliant
Technical Specification-LD MOB	Chap.2	R. 10	LD MOB	LD MOB must be made in PC-ABS plastic material.	Compliant
Technical Specification-LD MOB	Chap.2	R. 11	LD MOB	LD MOB must be compliant to IP54, according to IEC/EN 60529 standard.	Compliant
Technical Specification-LD MOB	Chap.2	R. 12	LD MOB	LD MOB must be IK9 for protection against physical damages (as per IEC/EN 50102 standard).	Compliant
Technical Specification-LD MOB	Chap.2	R. 13	LD MOB	LD MOB must be resistant to ultraviolet radiation (ultraviolet radiation resistance for high strength material) according to UV light testing EN ISO 4892-3:2016.	Compliant
Technical Specification-LD MOB	Chap.2	R. 14	LD MOB	LD MOB material must include fiberglass reinforcement and the thickness of the main body (i.e., PC-ABS box) shall be equal or higher than 3 mm.	Compliant
Technical Specification-LD MOB	Chap.2	R. 15	LD MOB	LD MOB plastic surface must be smooth, well plasticized, complete in shape, consistent in colour, free from defects such as bubbles, cracks, cavities, warps, impurities, flash edges and burrs.	Compliant
Technical Specification-LD MOB	Chap.2	R. 16	LD MOB	LD MOB plastic must have UL94-V0 self-extinguishing degree.	Compliant
Technical Specification-LD MOB	Chap.2	R. 17	LD MOB	LD MOB must be grey coloured (i.e., RAL 7035).	Compliant
Technical Specification-LD MOB	Chap.2	R. 18	LD MOB	LD MOB dimensions must be minimized as to allow for space optimization inside the box, considering the required number of SC/APC couplers.	Compliant
Technical Specification-LD MOB	Chap.2	R. 19	LD MOB	When LD MOB is open, the limiting angle must be at least 180° (±10°) in order to provide enough operating space.	Compliant

						1
Technical Specification-LD MOB	Chap.2	R. 20	LD MOB	LD MOB must support hundreds of repeated openings and closings without any damage for the product.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 21	LD MOB	LD MOB must have anti-theft opening function with special locking system (screw opening with a non-common screwdriver)	Compliant	
Technical Specification-LD MOB	Chap.2	R. 22	LD MOB	LD MOB cover must be equipped with a silicon rubber isolation gasket for perfect sealing.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 23	LD MOB	Cable must be fixed inside the LD MOB with tire-ups. Fixing accessories (e.g., tire-ups, adjustable metal strap,) shall be supplied together with the LD MOB in the right quantities considering the number of LD MOB's entry points.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 24	LD MOB	LD MOB must allow the fixing of different diameter cables.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 25	LD MOB	Cables entrance sealing, cables fixing, and box closing must not request any heat shrinkable products and/or resin.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 26	LD MOB	LD MOB internal design must ensure that all the components and the fiber optic routes are placed in such way that save space, follow a logical structure, are easy to understand and operate, and avoid fiber optic cable crossings.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 27	LD MOB	LD MOB internal design must guarantee that all the paths of the fibers or tubes respectthe minimum bending radius of 30 mm	Compliant	
Technical Specification-LD MOB	Chap.2	R. 28	LD MOB	LD MOB must allow the separate handling of each single patchcords/HH Connection cables without interfering with the circuits already in operation, during the activities of network construction, assurance and maintenance; therefore, it must be possible to access to the patches already performed without manipulating or removing the wiring.	Compliant	

Technical Specification-LD MOB	Chap.2	R. 29	LD MOB	The installation of the cables must be done without any risk for the existing patches.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 30	LD MOB	During the openings and closings of the LD MOB, the patchcords and HH Connection cables must not be stressed.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 31	LD MOB	LD MOB internal plastic components must be made of PC-ABS FR.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 32	LD MOB	LD MOB internal metal structural parts and mounting screws (if any) must be made of stainless steel SUS304. Any metal structural part, after 120h of salty spray test according to the salty spray test method of IEC 61300-2-26, must not show any visible rust spots on the outside.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 33	LD MOB	LD MOB couplers mechanical characteristics must comply with the IEC 61754 standard.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 34	LD MOB	LD MOB must be supplied with SC/APC couplers installed.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 35	LD MOB	All SC/APC couplers must be supplied with transparent dust caps on both sides.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 36	LD MOB	The production lot of each single component and the corresponding supplier must be labelled into the LD MOB. Labelling must specify:	Compliant	
Technical Specification-LD MOB	Chap.2	R. 36.a	LD MOB	Manufacturer acronym.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 36.b	LD MOB	Supplier acronym.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 36.c	LD MOB	Lot number or similar identification system of the production series.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 37	LD MOB	Non-removable, plasticized and printed with permanent ink QRcode (compliant to ISO IEC 18004:2015) must be applied inside the LD MOB indicating the data of the manufacturer and the operating manuals.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 38	LD MOB	LD MOB external cover must be labelled with the warning laser beam icon, according to UNI	Compliant	

				EN ISO 7010-2012.		
Technical Specification-LD MOB	Chap.2	R. 39	LD MOB	LD MOB external cover must be labelled with 1 Barcode bearing the unique identification number of the FB with the following characteristics:	Compliant	
Technical Specification-LD MOB	Chap.2	R. 39.a	LD MOB	CODE128 (ISO15417) encoding.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 39.b	LD MOB	The code of each LD MOB must be composed as follows: WWZZXXYYYYYYY.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 39.c	LD MOB	The LD MOB identification code must be unique and previously agreed with the Client (LD MOBs with duplication of the Code will NOT be admitted).	Compliant	
Technical Specification-LD MOB	Chap.2	R. 40	LD MOB	LD MOB external cover must be silk printed2 with PPC color logo which will be exactly defined prior to product order. Logos printed on stickers or labels and subsequently attached to LD MOB will not be accepted.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 41	LD MOB	LD MOB external cover must not bear any logo, name or other recognizable trait representing the manufacturer/supplier	Compliant	
Technical Specification-LD MOB	Chap.2	R. 42	LD MOB	LD MOB must be equipped with an adequate support system that allows to anchor the LD MOB in the places where installation is planned (i.e., walls).	Compliant	
Technical Specification-LD MOB	Chap.2	R. 43	LD MOB	The fixing system must be able to support, in addition to the weight of the LD MOB, any accidental overweight of 500 N.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 44	LD MOB	Each LD MOB must be packaged individually before leaving the factory.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 45	LD MOB	LD MOB packaging must protect the product against shocks and condensation during the storage and the transport, including in installers' vehicles.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 46	LD MOB	For each LD MOB the packaging must include:	Compliant	

Technical Specification-LD MOB	Chap.2	R. 46.a	LD MOB	Package list.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 46.b	LD MOB	The product and all the accessories needed for operating the product (e.g., tire ups, adjustable metal strap, Heat-shrink tubes,).	Compliant	
Technical Specification-LD MOB	Chap.2	R. 46.c	LD MOB	Product datasheet in English (description of the product and its conditions of use).	Compliant	
Technical Specification-LD MOB	Chap.2	R. 46.d	LD MOB	Technical datasheet of the passive components used (e.g., references, materials, paints, technical characteristics,).	Compliant	
Technical Specification-LD MOB	Chap.2	R. 46.e	LD MOB	Detailed instructions in English for the installation and operation of the product with a clear description of the cabling and management of passive optical components.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 46.f	LD MOB	Video in English showing the installation and operation procedures	Compliant	
Technical Specification-LD MOB	Chap.2	R. 46.g	LD MOB	Complete technical file in English showing the compliance of the product with the specifications.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 46.h	LD MOB	Product certificates.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 46.i	LD MOB	Product compliance with REACh regulation.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 46.j	LD MOB	Safety data sheet signed by an authorized person to engage the responsibility of the supplier.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 46.k	LD MOB	Lifetime of the product.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 46.I	LD MOB	Necessary information regarding the recycling of the products and its packaging and their carbon footprint.	Compliant	
Technical Specification-LD MOB	Chap.2	R. 46.m	LD MOB	Quality test plan of the product (IQC, IPQC, FQC, OQC).	Compliant	
Technical Specification-LD MOB	Chap.3	R. 47	LD MOB	Named N the max number of SC/APC couplers installed within a LD MOB, they must be sized as follows:	Compliant	
Technical Specification-LD MOB	Chap.3	R. 47.a	LD MOB	N = 2 \rightarrow LD MOB (2), suitable to host up to 2 patches;	Compliant	
Technical Specification-LD MOB	Chap.3	R. 47.b	LD MOB	N = 4 \rightarrow LD MOB (4), suitable to host up to 4	Compliant	

				patches;	
Technical Specification-LD MOB	Chap.3	R. 47.c	LD MOB	N = 6 \rightarrow LD MOB (6), suitable to host up to 6 patches;	Compliant
Technical Specification-LD MOB	Chap.3	R. 48	LD MOB	LD MOB must be realized following the functional scheme shown in Figure1.	Compliant
Technical Specification-LD MOB	Chap.3	R. 49	LD MOB	As shown in Figure 1, LD MOB must be equipped with a number of entry points equal to N on both sides of the box.	Compliant
Technical Specification-LD MOB	Chap.3	R. 50	LD MOB	LD MOB entry points must have a diameter suitable to handle the entering/exiting of patchcords and HH Connection cables with diameter from 1,5 mm up to 3 mm.	Compliant
Technical Specification-LD MOB	Chap.3	R. 51	LD MOB	LD MOB must be supplied with the accessories/parts needed for a proper installation and use listed below:	Compliant
Technical Specification-LD MOB	Chap.3	R. 51.a	LD MOB	Panel for positioning N type SC/APC female/female connectors.	Compliant
Technical Specification-LD MOB	Chap.3	R. 51.b	LD MOB	N type SC/APC couplers.	Compliant
Technical Specification-LD MOB	Chap.3	R. 51.c	LD MOB	Labelling and documentation.	Compliant
Technical Specification-LD MOB	Chap.3	R. 51.d	LD MOB	Fixing kit.	Compliant
Technical Specification-LD MOB	Chap.4	R. 52	LD MOB	Supplier must prove that all the products supplied and described in this technical specification, have successfully passed all the tests specified in the following regulations:	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.a	LD MOB	LD MOB Box: IP54 minimum, IK9 EN 50102.	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.b	LD MOB	UV resistance: EN ISO 4892-3.	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.c	LD MOB	Protection degree:	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.c.i	LD MOB	Visual appearance: IEC 61300-3-1.	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.c.ii	LD MOB	Protection degree: IEC 60529.	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.d	LD MOB	Optical (Tested 1310nm,1550nm and 1625nm):	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.d.i	LD MOB	Change in Attenuation: IEC 61300-3-3 Method 1.	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.d.ii	LD MOB	Transient loss: IEC 61300-3-28.	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.e	LD MOB	Vibration: IEC 61300-2-1.	Compliant

Technical Specification-LD MOB	Chap.4	R. 52.f	LD MOB	Cable retention: IEC 61300-2-4.	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.g	LD MOB	Cable torsion: IEC 61300-2-5.	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.h	LD MOB	Shock: IEC 61300-2-9.	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.i	LD MOB	Static load (Crush): IEC 61300-2-10.	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.j	LD MOB	Impact: IEC 61300-2-12, Method B.	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.k	LD MOB	Damp Heat: IEC 61300-2-19.	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.I	LD MOB	Change of Temperature: IEC 61300-2-22.	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.m	LD MOB	Resistance to corrosion (Salt mist): IEC 61300-2-26.	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.n	LD MOB	Re-entries: IEC 61300-2-33.	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.o	LD MOB	Intervention at a node: IEC 61300-2-33.	Compliant
Technical Specification-LD MOB	Chap.4	R. 52.p	LD MOB	Cable flexure (Bending): IEC 61300-2-37.	Compliant
Technical Specification-LD MOB	Chap.4	R. 53	LD MOB	Supplier must ensure the respect of visual appearance during and after the tests listed in 4.4, according to the following characteristics:	Compliant
Technical Specification-LD MOB	Chap.4	R. 54	LD MOB	Supplier must ensure the respect of protection degree after the tests listed in 4.4, according to the following characteristics:	Compliant
Technical Specification-LD MOB	Chap.4	R. 55	LD MOB	Supplier must ensure the respect of change in attenuation (change in insertion loss/static optical stability) during and after the tests listed in 4.4, according to the following characteristics:	Compliant
Technical Specification-LD MOB	Chap.4	R. 56	LD MOB	Supplier must ensure the respect of transient loss (dynamic optical stability) during and after the tests listed in 4.4, according to the following characteristics:	Compliant
Technical Specification-LD MOB	Chap.4	R. 57	LD MOB	Supplier must perform Fluorescent UV lamps test to evaluate UV resistance of the material composing the LD MOB, according to the following characteristics:	Compliant
Technical Specification-LD MOB	Chap.4	R. 58	LD MOB	Supplier must prepare a representative number of test samples, considering:	Compliant
Technical Specification-LD MOB	Chap.4	R. 58.a	LD MOB	LD MOBs features and installation environment.	Compliant

Technical Specification-LD MOB	Chap.4	R. 58.b	LD MOB	Applicable Cables size.	Compliant	
Technical Specification-LD MOB	Chap.4	R. 58.c	LD MOB	Installation at room temperature for protection degree test samples.	Compliant	
Technical Specification-LD MOB	Chap.4	R. 58.d	LD MOB	The need of a new sample for the evaluation of each different protection degree test.	Compliant	
Technical Specification-LD MOB	Chap.4	R. 58.e	LD MOB	Suitable cable length for the optical performance evaluation.	Compliant	
Technical Specification-LD MOB	Chap.4	R. 59	LD MOB	Supplier must perform all the tests listed at room temperature, unless otherwise stated.	Compliant	
Technical Specification-LD MOB	Chap.4	R. 60	LD MOB	Supplier must perform cable retention test to evaluate LD MOB protection degree, according to the following characteristics:	Compliant	
Technical Specification-LD MOB	Chap.4	R. 61	LD MOB	Supplier must perform cable torsion test to evaluate LD MOB protection degree, according to the following characteristics:	Compliant	
Technical Specification-LD MOB	Chap.4	R. 62	LD MOB	Supplier must perform static load (crush) test to evaluate LD MOB protection degree, according to the following characteristics:	Compliant	
Technical Specification-LD MOB	Chap.4	R. 63	LD MOB	Supplier must perform impact test to evaluate LD MOB protection degree, according to the following characteristics:	Compliant	
Technical Specification-LD MOB	Chap.4	R. 64	LD MOB	Supplier must perform damp heat test to evaluate LD MOB protection degree, according to the following characteristics:	Compliant	
Technical Specification-LD MOB	Chap.4	R. 65	LD MOB	Supplier must perform change of temperature test to evaluate LD MOB protection degree, according to the following characteristics:	Compliant	
Technical Specification-LD MOB	Chap.4	R. 66	LD MOB	Supplier must perform resistance to corrosion (salt mist) test to evaluate LD MOBprotection degree, according to the following characteristics:	Compliant	
Technical Specification-LD MOB	Chap.4	R. 67	LD MOB	Supplier must perform re-entries test to evaluate LD MOB protection degree, according to the following characteristics:	Compliant	

		-				
Technical Specification-LD MOB	Chap.4	R. 68	LD MOB	Supplier must perform cable flexure test to evaluate LD MOB protection degree, according to the following characteristics:	Compliant	
Technical Specification-LD MOB	Chap.4	R. 69	LD MOB	Supplier must perform vibration (optical) test to evaluate LD MOB optical performance, according to the following characteristics:	Compliant	
Technical Specification-LD MOB	Chap.4	R. 70	LD MOB	Supplier must perform cable retention test to evaluate LD MOB optical performance, according to the following characteristics:	Compliant	
Technical Specification-LD MOB	Chap.4	R. 71	LD MOB	Supplier must perform cable torsion test to evaluate LD MOB optical performance, according to the following characteristics:	Compliant	
Technical Specification-LD MOB	Chap.4	R. 72	LD MOB	Supplier must perform shock test to evaluate LD MOB optical performance, according to the following characteristics:	Compliant	
Technical Specification-LD MOB	Chap.4	R. 73	LD MOB	Supplier must perform change of temperature test to evaluate LD MOB optical performance, according to the following characteristics:	Compliant	
Technical Specification-LD MOB	Chap.4	R. 74	LD MOB	Supplier must perform intervention at a node test to evaluate LD MOB optical performance, according to the following characteristics:	Compliant	
Technical Specification-LD MOB	Chap.4	R. 75	LD MOB	Supplier must perform cable flexure test to evaluate LD MOB optical performance, according to the following characteristics:	Compliant	

Lifetime of the product

Quality Assurance:

According to this tender, we Zhongtian Broadband Technology Co., Ltd. will operate strictly according to Quality Assurance System ISO9001 and Environmental Management System ISO14001. Based on the quality policy and aim made by our headquarter, we set up a quality assurance team in which Quality Department, Technical department and Engineering Service Department is the main part and General Manager is the team leader. We audit all the factors of quality internally and offer post sales technical service and dealing the customer information. All our employees comply with the service policy "know customer, satisfy customer", insist the manufacturer policy "quality basic, strictly management factory" and implement the enterprises spirit "Meticulous, spotless, we try our best to serve high quality products and best service for this project. Here, I represent Zhongtian Broadband Technology Co., Ltd. make the promise on quality that.

The life of Passive Materials produced by Zhongtian Broadband Technology Co., Ltd. fully comply with tender, and assure that under the proper installation, normal operation and maintenance, it will operate well in its lifetime.

Zhongtian Broadband Technology Co., Ltd. assure that the supplied Passive Materials manufactured by good material, advanced production technical and best way for design and production, and fully complied with the quality, model and performance of contract.

After-Sales Service:

During the installation, we can send technical person to monitor Passive Materials installation and testing.

We provide technical inquiries and communication.

We can provide 24 months production warranty period after delivery.

According to the customers' requirement, we can provide the training including Passive Materials design, splicing, installation and maintenance.

All the quality documents and qualify factors are effectively controlled by Zhongtian Broadband Technology Co., Ltd. Based on the long term and effective quality control, we believe that our Passive Materials and quality assurance system can assure our supplied products and service satisfy the requirements in technical specification of tender document.

Bidder: Zhongtian Broadband Technology Co., Ltd.

Jan. 10, 2025

Action Plan for "Carbon Dioxide Peaking & Carbon Neutrality" Green & Low Carbon Manufacture (GLCM) In order to actively respond to the major strategic decision of "Carbon Dioxide Peaking & Carbon Neutrality" put forward by the CPC Central Committee and the State Council, ZTT Group must vigorously promote "Green & Low Carbon Manufacture" (GLCM). GLCM is a modern manufacturing mode that comprehensively considers the environmental impact and resource benefits and enables the whole life cycle of products and services from design, manufacturing, packaging, transportation, use to disposal to have the lowest impact on the environment and the highest resource utilization rate, optimize the economic and social benefits, and promote the high-quality development of nation and enterprises.

I General Requirements

1. Implementing the national strategy of "Carbon Dioxide Peaking & Carbon Neutrality". We must solidly promote the Opinions of the CPC Central Committee and the State Council on *Complete, Accurate and Comprehensive Implementation of the New Development Concept to Do a Good Job of Carbon Dioxide Peaking & Carbon Neutrality* and *Action Plan for Carbon Dioxide Peaking by 2030*, and contribute to the due efforts of enterprises and individuals to reduce global greenhouse gas emissions and slow down climate warming.

2. Actively participating in the construction of new power system with new energy as the main body. We will vigorously develop and consume green energy such as photovoltaic and wind power, speed up the construction of a clean, low-carbon, safe and efficient energy system, adjust the energy consumption structure, effectively respond to the "coal shortage, power cuts and halt production", strictly control the "intensity and total amount" of energy consumption, and realize the transition from "double control" of energy consumption to carbon emission as soon as possible.

3. Vigorously building a green and low carbon manufacturing system. We will adhere to green and energy-saving carbon and consumption reduction of the whole product life cycle, accelerate the innovation of low carbon technology in manufacturing industry, actively promote the use of advanced and applicable energy-saving and

32

low-carbon technologies, and digitalization, service-orientation and green low-carbon of manufacturing industry.

4. Making use of the situation to layout and optimize the industrial structure. We will actively build an industrial layout with passive all-optical network as the breakthrough, 5G energy products as the leader, prefabricated optical cable as the support, traditional ODN products as the foundation and system integration as the growth point, and firmly develop green and low-carbon industries such as green energy, 5G communication and Industrial Internet.

II Overall Goal

We must firmly establish the concept of green and low-carbon development, commit to the whole life cycle of products and services, adhere to green and low-carbon technological innovation, optimize the structure of energy consumption and industrial development, and promote green design, green procurement, green production and green living by means of energy substitution, raw material substitution, energy saving and emission reduction, material saving and recycling so as to realize the company's sustainable development strategy of reducing energy consumption and emissions, improving quality and efficiency, and help achieve the blueprint of China's ecological civilization.

During the 14th Five-Year Plan period, compared with 2020, the proportion of green energy consumption will reach about 5.7% in 2021, the energy consumption per unit will be reduced by about 10% in 2021, and the carbon dioxide emission per unit will be reduced by about 13%. By 2023, the proportion of green energy consumption will reach about 15%, the energy consumption per unit will be reduced by about 13%, and the carbon dioxide emissions per unit will be reduced by about 13%, and the carbon dioxide emissions per unit will be reduced by about 16%; By 2025, the proportion of green energy consumption will reach about 25%, the energy consumption per unit will be reduced by about 16%, and the carbon dioxide emissions per unit will be reduced by about 25%.

During the 15th Five-Year Plan period, by 2030, compared with 2020, the proportion of green energy consumption will reach 50%, the energy consumption per

33

unit will be reduced by about 25%, and the carbon dioxide emission per unit will be reduced by about 30%, so as to achieve Carbon Dioxide Peaking by 2030 and Carbon Neutrality by 2055.

	Output value	Greer energ const n	n Jy umptio	Compre consun yuan G	ehensive option pe DP	er ten the	Carbon emissions per ten thousand yuan GDP				
age	Output value (100 million yuan)	Tota I PV cons ump tion (10, 000 kwh)	Prop ortion of photo voltai c cons umpti on (%)	Total power consu mption (10,00 0 kwh)	Electri city consu mption per 10,000 yuan output value (kwh/ 10,000 yuan)	Compr ehensiv e energy consu mption per 10,000 yuan output value (tce/ 10,000 yuan)	Redu ction ratio of energ y consu mptio n per 10,00 0 yuan GDP	Total carbon emission s (tCO2e)	Carbon emissio ns per 10,000 yuan of output value (tCO2e/ 10,000 yuan)	Reduct ion ratio of carbon emissi ons per 10,000 yuan GDP	
2020	7.2	19.8	5%	398	53.36	0.018		3908.31	0.054		
2021	8.5	23.2	5.7%	408	48.02	0.0162	10%	3995	0.047	13%	
2022	10	46.9	10%	469	46.95	0.0158	12%	4600	0.046	15%	
2023	13	90.4 5	15%	603	46.42	0.0156	13%	5850	0.045	16%	
2024	25	226	20%	1133	45.35	0.0153	15%	11000	0.044	18%	
2025	30	336	25%	1344	44.82	0.0152	16%	12900	0.043	20%	
2025 National Level			20%				13.5 %			18%	
2030			50%				25%			thirty percen t	
2030 National Level 2020			25%								
City's					475						

The overall goal of "Carbon Dioxide Peaking & Carbon Neutrality"

Note: The data are calculated on the basis of the gross output value of Zhongtian Broadband Technology Co., Ltd. in the 14th Five-Year Plan, the target of carbon emission reduction per 10,000 yuan gross output value, the target of energy consumption reduction per 10,000 yuan gross output value, the target of photovoltaic consumption proportion and the total power consumption, energy consumption and carbon emission in the base year of 2020, which are as follows:

A. Comprehensive energy consumption per ten thousand yuan output value in that year (tce/ ten thousand yuan) = comprehensive energy consumption per ten thousand yuan output value in 2020 (tce/ ten thousand yuan) \times (1- the reduction ratio of energy consumption per ten thousand yuan GDP in that year).

B. Carbon emissions per ten thousand yuan of output value in that year (TCO2e) = carbon emissions per ten thousand yuan of output value in 2020 $((tCO2e))\times(1-$ carbon emissions reduction ratio per ten thousand yuan of output value in that year).

C. Total carbon emissions in the current year (t)= carbon emissions in the output value per ten thousand yuan in the current year (tCO2e)×target output value in the current year (100 million yuan) × 10,000.

D. Electricity consumption of output value per ten thousand yuan in the current year (kwh/ ten thousand yuan) = electricity consumption of output value per ten thousand yuan in 2020 (kwh/ ten thousand yuan) ×(1- reduction ratio of energy consumption of output value per ten thousand yuan in the current year).

E. Total electricity consumption (10,000 kwh)= output value of 10,000 yuan (kwh/ 10,000 yuan) × target output value (100,000 kwh)= total electricity consumption (10,000 kwh)× proportion of photovoltaic consumption.

Analysis and conclusion:

A. During the 14th Five-Year Plan period, the annual total power consumption and total carbon emissions are still rising year by year with the increase of output value. Compared with the target, we still need to continuously improve our production capacity, and reach the target of Carbon Dioxide Peaking by 2030.

B. In 2020, Nantong City's power consumption per ten thousand yuan GDP will be 475kwh/ 10,000 yuan, and we will be far lower than Nantong City's level.

C. During the 14th Five-Year Plan period, we will re-plan the construction of photovoltaic power stations, which can meet the total photovoltaic consumption of the company's overall goal of "Carbon Dioxide Peaking & Carbon Neutrality". However, from 2023, part of the electricity still need to be realized through green electricity trading.

III Overall Structure

IV General Route

1. Studying new technologies and reducing carbon emissions through transform and upgrade. We use advanced green low-carbon technology, find the differences of equipment, improve its performance and reduce energy consumption.

2. Benchmarking new equipment by iteration for high efficiency and energy saving. We track the latest performance compared with the existing equipment, calculate based on ROI, and establish a replacement plan.

3. Optimizing new processes and promoting new driving force by manufacturing upgrade. We study the latest product technology, optimize the manufacturing process, reduce unnecessary allowance and maximize the utilization of resources.

4. Digging deep into and reducing loss by lean improvement. We focus on the process of energy conversion, analyze the losses, and improve the energy utilization rate.

5. Fine controlling of emissions and recycling. We investigate all kinds of emissions and recycle.

6. Information layout and maximum value through transparent data. We layout the information system, master the actual use of energy and materials, make accurate analysis, and constantly improve and upgrade.

36

V Carbon Verification

1. Energy Verification

Defining the responsible department

Company-level and workshop-level data of electricity, gas, steam, oil and water are all checked and counted monthly by the carbon emission reduction work team, and released internally and externally to ensure the consistency and compliance of the data.

Clearing statistical coverage

In order to clearly check the company's total energy consumption and consumption intensity, it is necessary to know the power supply circuit diagram and types of energy, and find out the distribution and proportion of all kinds of energy consumption, all of which should be checked according to three-level energy data (on a monthly basis), which are the company level, the workshop level and the equipment level respectively.

Using automatic acquisition

Automatic data acquisition of energy is a very specific basic work, which should be implemented step by step according to the actual needs. All kinds of energy consumption data at the company level must be automatically collected and uploaded to the energy management platform. The energy consumption data at the workshop level, process level and equipment level are delivered to the energy collection and implementation service unit.

Work progress plan:

(1) Complete the company-level monthly energy verification by the end of October, 2021; (2) Complete the automatic data collection of electricity, gas and water at the end of December, 2021.

Statistics of energy verification in recent three years

					Tot	al Energy Co	sumption Sta	tistics						
the Year of 2019							and the second second							
н	tem	Unit of Measurement	January	February	March	April	May	June	July	August	September	October	November	December
Outpu	ut Value	ten thousand yuan	10302	6066	7000	8400	8615.66	13154.2	6614.84	11371.23	11966	7338.83	10800	8588.49
W	Vater	t	9184	5222	6407	5946	4690	5572	7977	7903	7151	6630	8179	6800
Ele	ctricity	krh	437900	282540	410000	317800	411000	396000	526000	521500	274300	283000	261000	278000
			1	1	1	1	1	1	1	1	1	1	Ì	1
	CO2	m ³	881.28	422.28	927.18	771.12	771.12	532.44	569.16	587.52	605.88	761.94	514.08	605.88
	CH4	m³	39346	22729	39670	34900	28366	29593	36605.0	30163.0	31616	33360	13590	32380
	C ₂ H ₂	m³	1	Ĩ	1	1	i	1	1	1	1	1	i.	1
	C ₃ H ₈	m³	1	1	/	1	1	1	1	/	1	1	Ì	1
	co	m³	1	1	/	1	1	1	1	/	/	1	i	1
	N ₂	m³	1	1	/	1	3757	2523.5	1800.5	3179.5	1419.5	1768.5	5220.5	2772
Gas	Ar	m³	14040	6660	9920	6580	6820	9780	6500	12420	5326	16760	10200	12648
	A mixture of He & Ar	m³	1	I.	7	7	T	1	1	i.	1	1	1	<i>i</i>
	Ar + CO ₂	m³	1	1	7	7	1	1	1	1	1	1	1	1
	0 ₂	m³	2025	1013	2476	2037	1676	2020	992	2374.5	2082	2402	1368	2051
	He	m³	1	1	1	1	1	1	1	1	1	1	1	1
			1	1	7	7	1	1	ī.	1	i	1	1	i i
			1	1	1	1	1	1	1	1	1	1	1	i
Steam	Steam	m³	1	1	1	7	1	1	1	1	1	1	1	i -
01	Gasoline	t	1	1	1	1	1	1	1	1	1	1.121	0.625	0.342
Oli	Diesel	t	0.658	0.081	0.224	0.519	0.331	0.624	0.45	0.470	0.35	0.667	0.136	0.25
Misselleneous	Charcoal	t	1	1	1	1	1	1	7	1	1	1	i -	1
Misbenarieous	Coal	t	1	1	1	1	1	1	1	1	1	1	1	1
Energy Conversion	TCE	т	106.15	64.95	103.15	85.47	101.54	88.03	113.33	104.81	75.76	79.15	74.09	77.23
Power Consumption		kwh/ten thousand yuan	42.51	46.58	58.57	37.83	47.70	30.10	79.52	45.86	22.92	38.56	24.17	32.37
Comprehensive Energy Consumption		toe/ten thousand yuan	0.010	0.011	0.015	0.010	0.012	0.007	0.017	0.009	0.006	0.011	0.007	0.009

				Tota	I Energy	y Consu	mption	Statist	ics					
the Year of 202	0													
ltem	1	Unit of Measuremen t	January	February	March	April	May	June	July	August	September	October	November	Decembe
Output V	alue	ten thousand yuan	3897	2479.9	6538.91	7726	768 <mark>9</mark>	7642.5	8728	6231	664 <mark>1.8</mark>	6469.29	7147	6227.33
Wate	er	t	7043	2629	5830	3095	6200	6400	6400	5620	6565	5752	<mark>54</mark> 06	3983
Electri	city	kvh	242000	178000	304000	334000	338000	375000	388000	378000	376000	299000	370200	398900
			1	1	1	1	1	1	t	1	l	1	1	1
	CO2	m ³	284.58	293.70	936.36	945.54	862.92	743.58	862.92	853.74	642.6	954.72	<mark>1312.74</mark>	541.62
	CH4	m ³	26800	1 <mark>2400</mark>	45000	36000	39 <mark>000</mark>	42000	<mark>41000.</mark> 0	40900.0	28000	30800	38000	39000
	C ₂ H ₂	m ³	/	/	/	/	/	1	/	1	/	1	1	1
	C ₃ H ₈	m ³	1	1	1	1	1	1	t	1	Į.	1	1	1
	со	m ³	/	1	7	1	1	/	/	/	/	1	1	1
	N ₂	m ^a	3144	2291	6069	5126	7981	12011	13827	10325	11239	8453	8122	10492
	Ar	m ³	3520	3177	7800	5020	7760	6640	6700	7380	8220	4C00	11320	6940
Gas	A mixture of He & Ar	m3	7	1	1	1	I	1	1	7	1	7	1	1
	Ar + CO ₂	m³	/	/	7	1	/	/	1	/	1	1	1	./
	0 ₂	m ³	1376	1063	975	1470	2042	<mark>4</mark> 59	2030	941	1020	2575	5573	5356
	He	m ³	/	/	7	/	/	1	1	1	/	1	1	/
			/	/	1	/	1	/	/	1	1	/	1	1
			/	/	/	/	/	1	/	1	/	/	1	/
Steam	Steam	m³	1	1	1	1	1	1	t	1	Į.	/	1	1
222	Gasoline	t	0.544	0.087	0.461	0.387	0.52	0.328	0.576	0.7 <mark>0</mark> 4	0.337	0.06	1	1
OII	Diesel	t	0.553	0.22	0.262	0.537	0.017	0.194	0.2	0.3	0.166	0.355	0.2	0.4
	Charcoal	t	/	/	/	1	/	1	/	1	/	/	1	/
Miscellaneous	Cosl	t	1	1	1	Ţ	1	1	t	1	l	1	1	1
Energy Conversion	TCE	т	65.38	38.36	97.21	88.91	93. <mark>4</mark> 1	101.94	102.21	100.85	83.45	77.82	96.03	100.89
Power Consumption		kwh/ten thousand yuan	62.10	71.78	46.49	43.23	43.96	49.07	44.45	60. <mark>6</mark> 6	56.61	46.22	51.80	64.06
Comprehensiv e Energy Consumption		tce/ten thousand yuan	0.017	0.015	0.015	0.012	0.012	0.013	0.012	0.016	0. <mark>013</mark>	0.012	0.013	0.016

						lotal Energy	Consumptio	on Statistics						
the Year of 2021						v					y			
Ite	m	Unit of Measurement	January	February	March	April	May	June	July	August	September	October	November	December
Output	Value	ten thousand yuan	6200	3172.93	7659	7268.58	7673.47	7129.32	7536.56	8637.83	8693.82	8555.25	9222.62	7276.09
Wa	ter	t	7638	6094	6907	8012	7359	8115	8269	5755	6756	3138.00	5962	2643
Elect	tricity	kvh	406300	228100	344200	364900	350300	449700	398000	434086	342196	235695.00	245793	275450
	CO2	m ³	734. <mark>4</mark>	651.78	798.66	670.14	624.24	302.94	587.52	651.78	679.32	459.00	923.9	1020.2
	CH4	m ³	43400	21000	37700	38000	37300	32728	31325.0	29092.0	28079	21142.00	24781	27368
	C ₂ H ₂	m³	1	1	1	1	1	1	1	1	1	1	1	
	C3H8	m ³	I.	1	1	/	1	1	1	I	/	/	I	1
	CO	m³	1	7	1	1	I	1	1	I	1	1	1	1
Gas	N ₂	m³	18325	8366	13372	8440	12688	17240	27480	27690	21400	14240.00	30280	28880
	Ar	m³	5480	5800	5120	3500	9330	3880	6710	8290	6580	3290.00	1	6440
	A mixture of He & Ar	m³	1	1	1	1	7	7	7	t	1	7	ī.	1
	Ar + CO ₂	m³	1	7	1	/	i	/	7	7	7	/	ĩ	/
	0 ₂	m³	4042	1446	3933	3034	2616	3045	3009	3562	6768	3666.00	2711.5	5338.054
	He	m ³	1	1	1	1	i	1	1	1	1	1	i	1
			l.	1	1	1	Ī	/	1	T	ī	i	Ī	1
			1	1	1	1	1	I	1	Ĩ	1	7	1	1
Steam	Steam	m³	/	1	/	/	1	1	1	/	1	1	1	1
	Gasoline	t	/	1	0.026	1	i	1	/	1	1	0.00	0.00	0.00
OII	Diesel	t	7	7	0.23	0.305	0.169	0.3	0.2	0.3	0.313	0.29	0.6	0.448
	Charcoal	t	/	1	1	1	1	1	/	1	/	/	1	1
Miscellaneous	Coal	t	1	/	/	/	1	1	/	1	/	/	1	1
Energy Conversion	TCE	т	107.6	55.96	92.44	95.38	92.66	98.79	90.57	92.04	79.4	57.507	64.041	70.905
Power Consumption		kwh/ten thousand yuan	65.532	71.889	44.941	50.202	45.651	63.078	52.809	50.254	39.361	27.550	26.651	37.857
Comprehensive Energy Consumption		toe/ten thousand yuan	0.017	0.018	0.012	0.013	0.012	0.014	0.012	0.011	0.009	0.007	0.007	0.010

Note: In 2020, Nantong City's power consumption per 10,000 yuan GDP is 475kwh/ 10,000 yuan.

Formula: Energy consumption (tce) = Electricity (kwh)*0.0001229+water (t)*0.0002571+natural gas $(m^3)*0.0017572+acetylene$ $(m^3)*0.0083143+propane$ $(m^3)*0.000671+$ gas (m^3) * 0.0003571 + Oxygen $(m^3)*0.0004$ + Gasoline(t)*1.4714 + Diesel(t)*1.4571.

Note: According to the requirements of the Group, water only includes tap water, and all energy sources are subject to the invoiced amount. Different measurement units are converted into standard statistical units by the conversion factor.

2. Carbon Emission Verification Statistical Table of Carbon Emission Verification in Recent Three Years

	Unit	2019	2020	2021
Total carbon emissions	tCO2e	4190.18	3908.31	3982.41
Output value	Ten thousand yuan	110271	77417	89025
Carbon emissions per 10,000 yuan of output value	tCO2e/ten thousand yuan	0.037	0.05	0.044

Carbon emissions per 10,000 yuan of output value (tCO2e/ 10,000 yuan) = total carbon emissions per year (tCO2e)/ GDP per year (10,000 yuan)

Total carbon emissions (tCO2e) = total electricity consumption (MWH) *0.7921+water consumption (ton) * 0+natural gas consumption (m³) *1.9997/1000+acetylene consumption (ton) * 88 /26+Propane consumption(tons)*132/44+Gasconsumption(tons)*88/56+Oxygen

consumption(tons)*0+Steam consumption(tons)*1000*2786/1000000*0.126+Gasoline consumption(tons)*3.0605+Diesel consumption (tons)*3.5032 Note:

(1) The unit given in the above calculation of power supply is MWH, and the commonly used power unit is KWH, 1000KWH=1MWH.

(2) 0.126 given in the formula above is the steam emission factor produced by coal-fired units, and the steam emission factor produced by gas-fired units is 0.059 TCO2/GJ.

(3) The emission factors of gasoline given above are only applicable to mobile

emission sources, and the fixed emission source coefficient of gasoline is 2.9994.

(4) The above-mentioned emission factors of diesel are only applicable to in-plant

diesel vehicles, the coefficient of out-of-plant diesel vehicles is 3.2149, and the coefficient of fixed emission source using diesel is 3.1753.

Peer	benchmarking	of carbo	on verification	in 2020	as follows
	benermanning	or carbe			as 10110113.

	Output value (ten thousand yuan)	Energy consumptio n conversion (tce)	Electricity consumptio n per 10,000 yuan of output value (kwh/ 10,000 yuan)	Comprehensiv e energy consumption per 10,000 yuan of output value (tce/ten thousand yuan)	Total carbon emissions (tCO2e)	Carbon emission s per 10,000 yuan of output value (tCO2e/ 10,000 yuan)
Huawei	8914000 0	470691	40.4	0.0052	457091 6	0.0512
Zhongtian broadban d	77417	1046.46	51.42	0.0135	3908.31	0.05

3. Carbon Footprint Verification

(1) Definition

Carbon footprint is a newly developed indicator used to measure the environmental impact from carbon dioxide emissions produced by institutions or individuals due to daily energy consumption. As a new type of environmental policy, carbon footprint is an ecological label.

Carbon footprint has created a market mechanism to make economic returns for enterprises' energy saving and emission reduction. By evaluating the carbon footprint of products, it can inform and facilitate consumers' green purchase, and encourage manufacturers to continuously reduce the impact of their production processes and products on the environment.

Carbon footprint category	Definition	Standard	Remarks
Product-level carbon footprint	Verifying direct and indirect greenhouse gas emissions in the product life cycle (from "cradle" to "grave"), involving supply chain, manufacturing, consumers, etc.	PAS2050 ISO14067 ISO14040	Internal energy consumptio n
Company-lev el carbon footprint	Calculating the direct and indirect greenhouse gases emitted by the company within a certain period of time (usually one year), mainly for the company's energy consumption.	ISO14064	manageme nt requirement s
Project-level carbon footprint	Verifying the direct and indirect greenhouse gases produced by a project within a certain period of time (such as one year). Usually, customers are concerned about the reduced emissions during this period of time and the same period of time in the past.	ISO14064 UNFCCC CDM	General customer requirement s

(2) Measuring carbon footprint

Inviting a third-party organizations to participate in carbon footprint measurement with the opportunity of national green factory declaration.

Before June 2022

Defining organizational boundaries and reporting boundaries, determining quantitative methods, collecting activity data, selecting emission coefficients, calculating emissions, internal assessment, checking inventory of greenhouse gases and preparing reports.

Calculation formula:

$\sum_{i}^{n} AD_{i} * EF_{i} * GWP_{i}$

AD: Activity Data, that is, consumption, such as electricity, natural gas and gasoline; EF: Emission Factor, the same substance, different occasions, different EF;

GWP: Global Warming Potential.

(3) Carbon footprint planning

Period	Plan		
	Completing the total carbon emissions within the		
From	"geographical boundary of enterprises" in 2020.		
December,	Hiring a third-party organization to calculate the carbon		
2021 to	verification of our company and the carbon footprint data of		
March, 2022	products according to customer requirements, and issue a		
	report.		
	Regularly monitoring carbon emissions, gradually establishing		
After March,	a carbon neutrality management system in the whole life		
2022	cycle, supporting the long-term carbon emission reduction,		
	carbon dioxide peaking and carbon neutrality development		
	goals, and strengthening our brand influence.		

VI Carbon Emission Reduction (Green Manufacture) 1. Green Design

Green design is the source means of green development, and also the key means to achieve the goal of carbon dioxide peaking and carbon neutrality.

In the design stage, according to customer requirements and environmental laws & regulations, while ensuring the product's functions, quality and life, the product's environmental attributes (such as reproducibility, recyclability, detachability, maintainability, etc.) should also be considered. We combine with the concept of green design, manufacture green and low-carbon products, create a resource-saving and environment-friendly society, and undertake the social responsibility of green, low-carbon, environmental protection and circular economy.

Green design includes the following two aspects:

(1) Digital simulation design. We adopt digital simulation design method, evaluate the product performance in advance, rationalize the design, and reduce the number of trial samples. We carry out system design, structural check, mechanical performance and electrical performance simulation analysis.

(2) Green materials and products. A. Green and environmentally-friendly degradable materials are selected in the design; B. Products are designed to reduce energy consumption, improve quality and increase efficiency; C. Products are designed to reduce material consumption; D. Recyclable design which is easy to disassemble, convenient to maintain, and can be recycled after the product is scrapped.

Project Case of Green Design

No.	Category	Project name	Project introduction Expected economic benefits		Expected energy saving and carbon reduction effect
1	Digital Digital simulatio proofing of n design cabinet		Siemens NX software is used to realize digital proofing of cabinet	80,000 kWh electricity saving per year; Cost reduction of 400,000 yuan/year	Carbon emission reduction of 91.5t/ year.
2	Digital simulatio n design	Product standardiz ation design	Standardization within the same product; Standardized design of similar parts between different products; Design specifications establishment	200,000 yuan	Production efficiency improvement of spare parts by 50% and electricity saving of 27,000 kWh per year
3	Green product	Smart lamp post	Smart light pole integrates the needs of traffic, police, urban management and public security departments, equipped with various functional perception devices, to realize holographic perception and intensive management of road intelligent infrastructure.	Electricity saving of 90 kWh each lamp post per month	Carbon emission reduction by 1036.8kg per year
4	Green product	Overlappin g base station	Energy-integrated cabinet+photovoltai c power generation scheme is an intelligent digital network energy product designed by innovative integration technology, which mainly integrates multiple-input and multiple-output power supply, high-voltage DC power distribution unit, and intelligent lithium battery into a cabinet to provide	Electricity saving of 2160 kWh each Overlappin g base station per month(confi gurable)	Carbon emission reduction by 11.43 tons per year

	various DC	
	uninterrupted	
	power supply for	
	5G base station	
	equipment	

2. Green Manufacture

(1) Green process

Green process refers to the process improvement behavior of the production process. The production process design adopts integrated production mode and economical production process, and uses resource-saving production technology. Project Case of Green Process

No.	Project name	Project introduction	Expected economic benefits	Expected energy saving and carbon reduction effect
1	Optimization of Prefabricated Optical Cable Hot Drying Equipment	In the hot baking process, the 2000W hand-held hot baking gun was changed to 550W portable hot baking gun.	Annual output of 1.3 million cores, and the estimated income of 26,000 yuan	Annual carbon dioxide emission reduction of about 14 tons
2	Optimization of production process for vertical BBU frame adjusting windshield assembly	The assembly is produced by general punching, which can improve product qualification rate and consistency, and save repair time.	Electricity saving of 13,500 yuan in the whole year	Annual carbon dioxide emission reduction of about 14 tons
3	Mesh structure optimization	After changing the die, the punching time of the standard cabinet mesh door was reduced from 8 minutes to 2 minutes.	Annual production of 23,000 mesh doors, which can save 2,300 hours and 43,000 yuan energy consumption in the whole year	Annual carbon dioxide emission reduction of about 52 tons
4	Improvement of thermal drying efficiency of connector heat shrinkable tube	In the connector curing process, the heat shrinkable tube needs to be heated, and output can be increased and energy consumption can be reduced by improving the heating efficiency.	A total of 30 million cores in the whole year, which can save 25,000 hours and 10,000 yuan energy consumption	Annual carbon dioxide emission reduction of about 4.2 tons

(2)Equipment energy-saving upgrade

All kinds of professional production equipment and peripheral supporting auxiliary

equipment are the biggest energy-consuming facilities in the field of industrial manufacturing. On the one hand, low-energy consumption equipment is used, on the other hand, energy-saving and low-carbon technical transformation of existing high-energy consumption equipment and long-life equipment is carried out. It is important to popularize and apply energy-saving and low-carbon technologies in the field of equipment, study the latest energy-saving technologies, dig deep into equipment loss and precisely control and utilize emissions.

A. High energy consumption equipment is listed as the key control object

Account books are established for high energy consumption equipment (energy consumption exceeding 100kW/h).

No.	Project name	Project introduction	Expected economic benefits	Expected energy saving and carbon reduction effect
1	Pretreatment pool reconstructio n	The pretreatment of the spraying line is reformed for waste water recycling and utilization.	6.1	8640 tons water saving per year
2 Air compressor waste heat recovery		Heat exchange technology is used to recover the waste heat of air compressor.	5.4	8,000 cubic meters of natural gas saving per year
3 Frequency conversion transformatio n of air compressor		Energy-saving transformation of air compressor by frequency conversion technology	3.2	12,000 kWh electricity saving per year

Project case of high energy consumption equipment renovation

B. Long-life equipment is listed as the key improvement object

Account books are established for long-life equipment (more than ten years).

Project case of long-life equipment renovation

No.	Project name	Project introduction	Expected economic benefits	Expected energy saving and carbon reduction effect
1	Modification of high energy consumption fan for coating line	Replace the third-stage high-energy consumption motor with the first-stage energy-saving motor	Annual cost reduction of 45,000 yuan	Carbon emissions reduction of 20t/ year

C. The peripheral supporting auxiliary equipment will be reformed as a whole

The peripheral supporting auxiliary equipment has strong universality, and there is much room for improvement.

Project case of common auxiliary equipment energy-saving renovation

No.	Project name	Project introduction	Expected economic benefits	Expected energy saving and carbon reduction effect
1	Hitachi air compressor replacement	High-efficiency air compressor permanent magnet frequency conversion technology	43000 yuan	Carbon emissions reduction of 39t/ year.

3. Green Procurement

Green procurement is the behavior of fully considering environmental protection, resource conservation, safety and health, low carbon and recycling promotion, while advancing the concept of green low carbon, and giving priority to purchasing and using raw materials, products and services that are conducive to energy-saving, water-saving and material-saving. We set up a special green procurement work team to convey green and low-carbon manufacture requirements to our suppliers.

(1) Goal of green procurement

Туре	Supplier	Goal of green procurement
Short-term goals for 2023	Completing the pilot supplier promotion	10% reduction in carbon emissions per million yuan of purchased goods and services
Mid-term goals for 2025	TOP100 suppliers with purchase amount	10% reduction in carbon emissions per million yuan of purchased goods and services
Long-term goals for 2030	TOP100 suppliers with purchase amount	25% reduction in carbon emissions per million yuan of purchased goods and services

(2) Major measures of green procurement

A. Establishing a sustainable green supply chain management strategy. Suppliers are required to incorporate the concept of green supply chain management into the development strategic planning, define the objectives, set up management departments, and participate in it;

B. Implementing green supplier management. Suppliers are required to establish the concept of green procurement, constantly improve and perfect procurement standards and systems, and make green procurement run through the whole process of purchasing raw materials, products and services;

C. Strengthening green production. We create the green design concept based on the product life cycle, integrate the environmental data resources, establish the basic process and product database, build the evaluation model, and carry out the life cycle evaluation in the R&D stage;

D. Building a green recycling system. We establish an extended producer responsibility system, and take the initiative to undertake the responsibility of recycling and resource utilization of discarded products;

E. Building a green information collection, monitoring and disclosure platform. We establish an online monitoring system for energy consumption and a database for emission reduction monitoring, regularly publish corporate social responsibility reports, and disclose the completion of energy conservation and emission reduction targets.

(3) Main requirements of green suppliers

A. Requiring suppliers to obtain certification of environment, energy management system and carbon emission verification system, formulating and implementing carbon emission reduction targets and action plans, and increasing energy conservation and emission reduction;

B. Incorporating carbon emission reduction requirements into supplier performance evaluation, system audit and new supplier certification requirements, and suppliers choose to lean towards energy saving and consumption reduction;

C. Requiring suppliers to prohibit or restrict the use of harmful substances and implement carbon emission reduction management, advocate suppliers to increase the use of clean energy, and support the long-term goal of green and low carbon;

D. Logistics transportation will developed to new energy and hydrogen energy. We reduce the resource consumption in the process and the harm of logistics to the environment, and realize the greening of logistics environment and the best utilization of logistics resources.

4. Green Logistics

Green logistics is a process of making full use of logistics resources, adopting advanced logistics technology, rationally planning and implementing logistics activities such as transportation, storage, loading and unloading, handling, packaging, distribution processing, information processing to reduce the impact of logistics on the environment. In order to design green logistics from the whole life cycle of products, we can focus on the following aspects:

(1) Green logistics within the factory

Inter-process transfer adopts electric unmanned vehicles such as AGV and RGV through digitalization of manufacturing industry.

For short-distance transportation of materials in the workshop, electric forklifts and

47

other transportation methods shall be adopted, and the required transportation route, transportation volume and time shall be arranged as a whole, so as to reduce unplanned and purposeless operations of forklifts and other transportation tools.

We strengthen the research on energy-saving technology of forklifts, and manage the purchase of forklifts according to their load capacity.

(2) Intelligent warehouse material management

The feasibility of intelligent warehouse management is discussed for key raw materials, semi-finished products and finished products. For example, intelligent three-dimensional warehouse can greatly reduce the storage area, and digital warehouse can greatly reduce the time and labor consuming of finding materials, the risk of wrong mixing. If the product is qualified after testing, the certificate will be posted. When the product is packaged, it will be managed by region and the order. When the product is delivered, the forklift can pick up the goods accurately.

(3) Green outbound of finished products

A. Improving the vehicle rate. Centralized scheduling of orders in the same direction, ensuring one-time delivery of orders at the same address, improving the vehicle rate, avoiding batch delivery of scattered orders, and reducing transportation costs.

B. Careful dispatch and delivery. Logistics tallymen need to strengthen the dispatching and control of vehicles, goods, personnel and forklifts, and carry out fixed-point and fixed-time quantitative management to avoid vehicles running empty or blocking traffic.

C. Reducing the inventory cycle. We strictly control delivery delay and charge overdue storage fees by the hour. When the order is overdue, the packaging quality risk should be assessed.

D. Reducing report output. A single discussion on the control of the delivery material. It is really necessary to provide paper records in batches, and print them in a suitable typesetting way.

E. New multi-modal transport: We explore new modes of logistics and transportation such as railway-highway, water-railway and highway-water transport and promote cost reduction and efficiency increase of logistics industry and green and low-carbon development of transportation.

Project case of green logistics

				Expected Expected	d		
No.	Category	Project name	Project introduction	economic benefits	energy carbon effect	saving redu	and ction

1	New multi-modal transport	Railway -highway transport	Identifying railway -highway transport contract in advance every month, arranging production, purchase and delivery in advance, and setting aside the multimodal transport plan.	Cost reduction of 40,000 yuan/yea r	Carbon emissions reduction of 0.8 tons
2	Green logistics within the factory	Electric forklift	Replacing diesel forklift with electric forklift	Cost reduction of 10,000 yuan/yea r.	Carbon emissions reduction of 5 tons

5. Green Packaging

Green packaging is also an important part of "Green & Low-Carbon Manufacture". In order to realize the harmony and unity of people, society and nature, and the sustainable development of packaging for protecting the environment and saving resources, we should recycle more waste and harmful materials. Especially for non-high-energy-consuming enterprises, such as electronic components and electrical manufacturing, it can be improved from the following aspects: recyclable materials, recycling materials, and reduced packaging.

Project case of green packaging

No.	Categor y	Project name	Project introduction	Expected economic benefits	Expected energy saving and carbon reduction effect
1	Reduce d packagi ng	Packaging reduction	Customizing and standardizing the packaging of conventional batch of products, and limiting the size at the source of packaging design to achieve the effects of simplifying packaging, reducing waste and saving resources.	8000 yuan	Packaging materials saving of 2 tons
2	Recyclin g material s	Reducing non-recyclabl e fillers	In the packaging that must be filled, honeycomb paper or other recyclable materials should be gradually used instead of foam to achieve the goal of recycling. Honeycomb paper is made of recyclable paper, which can be 100% recycled after use.	30000 yuan	Non-recyclabl e materials replacement of 2 tons

6. Green Disposal

(1) Sorting and storage

The types and quantities of solid, liquid and hazardous wastes shall be stored in categories, and signs and labels shall be strikingly hung on the storage site.

(2) Safe transfer

Setting the solid waste transfer route. Special vehicles should be qualified for hazardous waste transportation. We weigh the hazardous waste before transfer, and fill in the transfer sheet, including the name, characteristics, place of production and process.

(3) Compliance

A. Solid waste disposal

Specific solid wastes includes plates and aluminum scrap; General solid waste includes metal scraps, waste paper bins, waste wooden boxes, glass bottles, waste plastics, waste paper, etc. Solid waste disposal satisfies the waste reduction, but also achieves economic benefits.

B. Hazardous wastes disposal

Organizations with corresponding qualifications should be entrusted to carry out compliance, and confirmed to ensure the compliance of the hazardous wastes treatment process.

It is forbidden to mix hazardous wastes with general wastes, and different types of hazardous wastes should be collected separately.

7. Green Life

(1) Green office

We improve the energy-saving resource management system for air conditioners, elevators, lighting, printers, copiers and household appliances, and strengthen the target management of energy and water consumption. Green products such as energy-saving, water-saving, environmental protection and regeneration are selected for office materials, and paperless office is promoted.

We give priority to the purchase of green products such as energy-saving and water-saving appliances, and reduce the consumption of domestic energy resources. We actively practice green lifestyle, save water and electricity, do not waste food and use disposable plastic products. In addition, we participate in voluntary tree planting, environmental supervision and protection publicity and other green public welfare activities.

(2) Green traffic

We advocate to take public transportation and purchase new energy vehicles, etc.

(3) Green Park

A. Green infrastructure, perfect supporting facilities such as water, electricity, gas and roads, and adopt energy-saving lighting and water-saving appliances;

B. Creating a livable environment in the park, optimize parking management, standardize pipeline installation, strengthen noise control, rationally lay out public green space and increase public activity space;

C. Improving the level of informatization and intelligence in the park, make full use of the existing information platform, and integrate data and information such as park security, public facilities management, and environmental sanitation monitoring;

D. Cultivating the green culture of the park and carry out green theme propaganda.

VII Carbon Trading

The basic principle of carbon trading is that one party of the contract obtains greenhouse gas emission reduction by paying the other party, and the buyer can use the purchased emission reduction amount to slow down the greenhouse effect so as to achieve its emission reduction goal.

Considering that some high energy consumption units can't transform quickly in a short time to meet the needs of green manufacturing. We can refer to the policy trends of the state in carbon trading, and adopt trading methods to realize carbon offset, so as to achieve legality, compliance and rationality, and finally achieve the goal of carbon neutrality.

1. Photovoltaic Power Generation

We make full use of all kinds of resources such as roofs, open spaces, carports and invest in the construction of distributed photovoltaic power stations, which are used as self-contained power sources and replace traditional electric energy with photovoltaic green energy.

We will build a new photovoltaic power generation capacity of 257.6KW in 2022, with an annual power generation capacity of about 270,000 kWh. The carbon emission can be reduced by 119.6 tons.

Building user-side shared energy storage system in green park.

It is used for peak-valley electricity price arbitrage of energy storage industrial users. Users can use the energy storage device to store electric energy in the valley period when the electricity price is low, and use the stored electric energy in the peak period, thus reducing the electricity bill expenditure and avoiding the peak period of electricity consumption. Planning and construction should be combined with distributed photovoltaics, and the way of "using photovoltaics during the day and storing energy at night" can effectively solve the current power load limitation problem of some enterprises. Supporting the "parallel-to-grid switching device", the power grid is no longer worried about power failure, and the "millisecond seamless switching" standby power supply has no worries about important loads.

VIII Safeguard Measures

1. Organizational Guarantee

(1) Special carbon emission reduction work team

Personnel: The general manager of the company is the team leader, the director of the digital office is the executive team leader, and the managers of each department participate in the daily activities of carbon emission reduction as members of the special class.

Responsibilities: As the main unit of carbon emission reduction, implement the decision-making and deployment of special classes to ensure the normal operation of special classes; To study the carbon emission reduction technology and realization path of the unit, and organize to formulate the double-carbon target, strategic plan, action plan and energy saving and emission reduction measures of the unit; Coordinate resources, organize the implementation, supervise and promote the important matters agreed by the special class; Regularly report the work progress to the special class.

Time Limit	Job Responsibility	Responsible Organization
Late October, 2021	Preparing the first draft of the outline of Green & Low Carbon Manufacture (GLCM) and conduct the initial review	Special carbon emission reduction work team
October 30, 2021	Completing monthly energy inventory	Digital office
Mid-Decembe r,2021	Completing automatic acquisition of company-level data on electricity, gas and water	Digital office
Mid-Decembe r,2021	Completing the on-site deployment of automatic collection of electricity, gas and water data and output counters of key equipment each workshop and realize early warning of long-term idling and unit consumption exceeding	Digital office
The fourth quarter of	Selecting key cooperative suppliers to promote energy saving and emission reduction	Purchasing department

2. Managerial Guarantee

2021	technologies	
The fourth quarter of 2021	Completing the investigation, elimination and replacement of the company's high energy consumption equipment	Production department

Based on the power consumption in the fourth quarter of 2020, the power saving target is $\geq 10\%$. On the basis of considering the same output scale, the unit that has achieved the target will reward the team with 50% of the power saving amount, and the unit that has not achieved the target will reward the team with 50% of the excessive power consumption amount.

3. Technical Support

(1) Energy Management System (EMS)

By building an energy management platform based on the industrial Internet, the comprehensive collection and management of energy consumption (water, electricity, gas, coal) in production and daily factory affairs can be realized with the help of two-dimensional code and data acquisition technologies. Establish models of equipment energy consumption, production line energy consumption and workshop energy consumption, realize energy consumption prediction and early warning, improve energy-saving space and save production costs.

The technical committee of the group planned the EMS in a unified way. The energy management platform can realize the functions of factory power analysis, workshop power analysis, production line power analysis, equipment power analysis, real-time power monitoring and power alarm prediction. Production water analysis, factory water analysis and real-time monitoring of water energy.

(2) Certification of EMS

Energy conservation is a systematic and comprehensive work. At present, there are many problems, such as no basis for energy use, no quota for distribution, no measurement for assessment, no plan for management, no supervision for loss, no measures for energy conservation, and no management for waste. Applying systematic management methods to reduce energy consumption, improve energy utilization efficiency, promote energy conservation, and build energy management system is the key to energy management. In line with GB/T 23331-2020/ISO 50001:2018 Energy Management System Requirements and Usage Guide, the company's operation is more competitive by improving energy performance and reducing energy consumption.

(3) Green factory certification

With reference to GB/T 36132-2018 General Principles of Green Factory Evaluation,

GB/T 33761-2017 General Principles of Green Product Evaluation, GB/T 39257-2020 Green Supply Chain Management Evaluation Standard for Green Manufacturing Enterprises and other norms, we will compare them item by item, benchmark the construction, and carry out the green factory certification in an orderly manner.

4. Financial Guarantee

In accordance with all the work plans listed in the final version of Action Plan for Green & Low- Carbon Manufacture (GLCM) V2.0, Digital office shall make a good plan design and budget, especially make a good calculation of the expected economic benefits and the expected energy saving and carbon reduction effects. If necessary, the Office shall also organize the expert review of the plan, and then put into the renovation and upgrading work.

IX Conclusion

Finally, under the general trend of building a harmonious, sustainable innovation and supply chain in the whole society, all of us should recognize the times and trends under the new situation of "double carbon". We have to force management, optimize production scheduling and adapt to the power supply period; It is necessary to innovate technology, reduce energy consumption, eliminate backward tooling and connect with new materials and technologies, so that limited resources can create maximum benefits.

Quality test plan

1. Purpose

To ensure product quality, inspection requirements and methods for sheet metal parts have been established.

2. Scope

This specification is used to guide the process inspection personnel in conducting the full process inspection of our company's sheet metal parts.

3. Inspection criteria and specifications

3.1 KD03-BJ-0015 "Process specification for dimensional and positional tolerances of sheet metal structural components"

4. Testing environment requirements

4.1 Having a normal visual acuity of 1.0 or above (including corrected) and color perception.

4.2 Appearance and color illuminance: The appearance and color are under natural light or approximate natural light with an illuminance of 450-550LX (such as a 40W fluorescent lamp or lamp located 500mm away from the inspection surface).

4.3 Visual distance: The distance between the eyes and the product is 650-75mm, and direct vision is accurate.

4.4 Environmental performance testing area and material performance testing area: The temperature requirement is 15-35 $^{\circ}$ C, and the humidity is 45-75%.

5. Test items and indicator requirements

5.1 Process testing is conducted by sampling and testing according to product batches and production processes

5.2 Implement a full process inspection to control product quality, with inspection personnel conducting spot checks. The inspection frequency for the entire process is 2 times per day;

5.3 The specific regulations for the process testing content, inspection methods, and sampling quantity of each batch of products are as follows:

No	Process	Test items and requirements	Test methods/ tools/equ ipment	Test quantity
	Confirmati	1. Check whether HSF environmentally friendly materials are		
	on of	selected (whether there are HSF environmental labels on the	Visual	
**	materials	environmentally friendly materials);		全检
	and	2. Check whether the fixtures and other equipment used are		
	fixtures	HSF environmentally friendly (whether the production		

		equipment of environmentally friendly products has HSF		
		environmental labeling);		
		1. Visually inspect the board to see if there are any defects	Visual	5 pcs
		such as dents, cracks, or deformations.	inspection	Ac=0Re=1
			Visual	
		2. Check whether the type and thickness of the board meet	inspection	5 pcs
		the requirements of the drawing.	and	Ac=0Re=1
			caliper	
		3. Calculate the unfolded dimensions based on the part	Таре	
	Dunchin	drawing and check if they match the actual measured	measure,	5 pcs
1	Punchin	dimensions.	caliper	Ac=0Re=1
	g		Visual	
		4. Refer to the drawings to check for any missed, excessive,	inspection	5 pcs
		or incorrect punches. Measure the actual hole spacing, size,	and	Ac=0Re=1
		and shape to see if they are consistent with the part drawings.	caliper	
			Visual	
		5. The acceptance standards for hole tolerance defects are	inspection	5 pcs
		detailed in Appendix 11	and	Ac=0Re=1
			caliper	
		1. Check whether the bending direction is correct according to		
	Bending	the drawing, and whether there are any missing or excessive	Visual	5 pcs
		folds.	inspection	Ac=0Re=1
		2. Check if the bending dimensions are consistent with the		
2		drawings. (* Embedded double door external dimensions -	0.1	5 pcs
		width needs to be controlled with a negative tolerance of	Caliper	Ac=0Re=1
		-0.5)		
		3. Measure whether the bending angle is correct (see	Angle	5 pcs
		Appendix 4 for details)	ruler	Ac=0Re=1
		1. Calculate the unfolded size based on the part drawing,		5
3	Normal	check if it matches the actual measured size, and check the	Caliper	5 pcs
	punching	hole size.		Ac=0Re=1
		1. Check if the size of the counterbore is correct and if there	Oalinana	
		are any omissions.	Callpers,	5 pcs
		2. Is the size of the tapping produced according to the	go/no go	Ac=0Re=1
		drawing, with smooth threads that can pass through and stop.	gauges	
4	Fitter		Visual	5 pcs
		3. IS the direction of the counterbore correct.	inspection	Ac=0Re=1
		4. Is there any phenomenon of missing pressure,	Visual	5 pcs
		mispressing, inability to press, or damage to the board on the	inspection	Ac=0Re=1

		surface.		
		5.* Reliability test for push and pull force of riveted parts	Reliability Test Guide	1 pc/day
		1. The welding size, position, and direction shall be consistent with the requirements of the drawing.	Visual inspection , caliper, tape measure	5 pcs Ac=0Re=1
		2. The welding appearance should be free of welding defects such as oil stains, burning through, undercutting, incomplete welding, slag inclusion, porosity, shrinkage, cracks, poor forming, spatter, weld nodules, incomplete fusion and incomplete penetration.	Visual inspection	5 pcs Ac=0Re=1
	Welding	3. Is the selection of welding method correct.	Visual inspection	5 pcs Ac=0Re=1
5		4. If the verticality of the welded structure is not specified with a tolerance, it shall be tested according to the general tolerance specified in GB1804, as detailed in Appendix 1	Tape measure, caliper	5 pcs Ac=0Re=1
		5. The flatness of the cabinet door and side panels meets the requirements (according to the requirements of each cabinet drawing). If the drawing does not require a requirement of 5mm or less, they can only be concave inward.	Feeler gauge, vernier caliper	5 pcs Ac=0Re=1
		6. Smooth transition between weld seam and base metal; The weld seam reinforcement is between 0-3mm; Whether the number of welding points meets the requirements of the drawing;	Visual inspection and caliper	5 pcs Ac=0Re=1
		7 * Welding strength reliability test: Hammer impact method is used for testing, selecting visually good parts, with the bolt facing upwards and the hammer vertically striking the bolt from top to bottom until the plate deforms (indents). The solder joints should not have fractures, cracks, or detachment.	Reliability Test Guide	1 pc/day
6	Polishing	1. The polishing surface is smooth and even, and whether the polishing operation distinguishes between rough and fine grinding operations.	Visual inspection	5 pcs Ac=0Re=1
6	Polishing	2. The surface of the product has no missed grinding, no welding marks that have not been polished clean, no strip-shaped polishing marks, and a pit depth of less than	Caliper	5 pcs Ac=0Re=1

	0.25mm.	

Note: 1. Special process: Welding

2.The marked * item is a reliability test item, and the test method is detailed in the Reliability Test Operation Guide.

3. If the order quantity is less than the sampling quantity, a full inspection will be conducted.

4. The inspection items with * * are only applicable to orders with environmental requirements.

5.4 Part processing acceptance

5.4.1 The dimensions, shapes, positions, and machining roughness specified in the technical requirements of the pattern design shall be inspected and accepted in accordance with the requirements of the pattern design.

5.4.2 For inspection and acceptance without specified requirements in the design, the relevant requirements in 5.5 shall be followed for inspection and acceptance.

5.5 Inspection and acceptance regulations for machined parts without specified technical requirements in the drawings

5.5.1 Linear dimensions shall be inspected and accepted according to level m in Appendix 3. Pay attention to taking (+) for inclusive relationships, (-) for inclusive relationships, and (±) for non inclusive relationships.

5.5.2 Angle: Conduct inspection and acceptance according to the following two situations, taking (+) for inclusive relationship, (-) for inclusive relationship, and (±) for non inclusive relationship.

5.5.2.1 The bending angle of the bent part shall be executed in accordance with the provisions of Appendix 6.

5.5.2.2 The punching angle of the punched parts shall be executed according to the provisions in Appendix 7.

5.5.3 The straightness and flatness shall be inspected and accepted according to the following two situations

5.5.3.1 The straightness and flatness of the formed surfaces of flat stamped parts (flat parts processed by punching) and formed stamped parts (parts processed by bending, stretching or other forming stamping) shall be determined in accordance with the provisions of Appendix 8.

5.5.3.2 The straightness of the bending line of the bent part shall be determined in accordance with the provisions of Appendix 9.

5.5.4 Coaxiality and symmetry, whether for flat or formed stamped parts, shall be carried out in accordance with the provisions of Appendix 10.

5.6 Appearance inspection and acceptance regulations

5.6.1 Burr requirements

For cold stamped parts, the machining burrs shall be inspected and accepted in accordance with the provisions of Appendix 5. For parts with clear requirements for burrs, the final inspection and acceptance of the parts shall be carried out according to the technical requirements of the drawing.

6. Unqualified products

When any unqualified are found during the process inspection, it is necessary to label the unqualified, preliminarily analyze the reasons, and make written records. The testing room will initiate a quality feedback form OA feedback process to provide timely feedback to relevant departments. Follow the "Unqualified Product Control Procedure" specifically

7. Related documents

"Unqualified Product Control Procedure" KD02-ZL-0012

8. Related Records

"Process Inspection Record Form" KD04-JC-0006

"Quality feedback form" KD04-JC-0004

"Raw Material Quality Feedback Form" KD04-JC-0003

9. Appendix

Appendix 1 Tolerance of Verticality (Unit: mm)

	~120	>120~400	>400~100 0	>1000~200 0	>2000~4000
≤3	0.5	1.0	1.8	2.6	4.0
>3~6	1.0	1.5	2.4	4.0	5.5

Appendix 2 Tolerance of Gap (Unit: mm)

	Same gap	Parallel clearance
≤1000	1.0	2.0
>1000	1.5	2.5

Appendix 3 The numerical punching of the limit deviation value for general tolerance linear dimensions in GB1804

	Dimension (mm)							
Tolerance	0.5~3	>3~6	>6~30	>30~12	>120~40	>400~100	>1000~2000	>2000~4000
				0	0	0		
Accuracy	±0.05	±0.0	±0.1	±0.15	±0.2	±0.3	±0.5	-
f		5						
Medium	±0.1	±0.1	±0.2	±0.3	±0.5	±0.8	±1.2	±2
m								
Rough	±0.2	±0.3	±0.5	±0.18	±1.2	±2	±3	±4
С								
Coarsev	-	±0.5	±1	±1.5	±2.5	±4	±6	±8

Appendix 4 The maximum deviation value of the angle dimension is determined by the length of the shorter side of the angle

Tolerance	Dimension, mm						
Toloranoo	~10	>10~50	>50~120	>120~400	>400		
Accuracy							
f	±1°	±30'	±20'	±10'	±5′		
Medium							
m							
Rough	+1°30′	+1°	+30'	+15'	+10'		
с	1 30	±1	100	±15	L IO		
Coarsev	±3°	±2°	±1°	±30'	±20'		

Appendix 5: acceptable range of burr height for general punching parts

Size (plate thickness mm)		≤1.2	>1.2~1.5	>1.5~2.5	>2.5~3.5	>3.5
				Burr height		
	Sprayed parts in normal	10%	8%	6%	5%	4%
Туре	production					
	New mold	5%	5%	4%	3%	2%
	Electroplated parts and parts					
	without surface spraying in	5%	5%	4%	3%	2%
	normal production					

Appendix 6 Tolerance of Bending Angle

Bending angle	Tolerance
≤90°	±2°00′
>90°	±3°00′

Appendix 7 Tolerance of Punching Piece Angle

Short edge length	~30	>30~120	>120~400	>400~1000
(mm)				
Tolerance	±2°	±1°	±0°30′	±0°20′

Appendix 8 Straightness and Flatness Tolerance Numbers for Stamped Parts

Size (length)		≤10	>10~25	>25~63	> 63~160	>160~400	>400~1000	>1000
					Toleran	ce		
Туре	Flat	0.06	0.10	0.15	0.25	0.40	0.50	0.90

stamped							
parts							
Formed							
stamping parts	0.12	0.20	0.30	0.50	0.80	1.20	1.80

Appendix 9 Bending Line Straightness Tolerance of Bending Parts

Size (length)		~120	>120~400	>400~1000	>1000~2000	>2000~4000	
		Tolerance					
Thick	≤3	0.3	0.5	0.9	1.2	1.6	
ness	>3~6	0.5	1.0	1.5	2.0	2.8	

Appendix 10 Coaxiality and symmetry of stamped parts without specified tolerances

Size (length)		<3	>3~10	>	>	>63~160	>	>	>1000	
		≥3	23.010	10~25	25~63	2 03 2 100	160~400	400~1000	> 1000	
			Tolerance							
	Flat									
Туре	stamped	0.25	0.40	0.60	0.80	1.00	1.20	1.60	2.00	
	parts									
	Formed									
	stampin	0.50	0.80	1.20	1.60	2.00	2.50	3.20	4.00	
	g parts									

Appendix 11 Dimensional Tolerance and Geometric Tolerance Defect Table

No	Name	Description	Requirements
1	Process leakage hole	 Drainage holes required for electroplating or spraying processes; Due to the waterproof requirements of the product itself, a leakage hole is opened at the lower end of the door panel; The hole shape includes circular or square holes, as well as other types of holes. 	The size of the leakage hole is not strictly controlled, with a negative tolerance of ≥ -0.5mm and a maximum size of ≤ -6mm in the direction of the end face width
2	Process hook hole	Hanger holes required for electroplating or spraying processes.	
3	Installing lumbar hole	The waist circular through-hole designed for assembly of structural components.	Length direction: Control error ± 5mm, but there should be no variation in the hole shape

			Width direction:+1mm/-0mm
4	Installing circular holes	Round through holes designed for assembly purposes in structural components	Error:+0.5mm/-0mm
5	Non installation square hole	Non assembly marking holes and avoidance holes for structural components.	Regardless of diameter control
6	Reinforceme nt opening	Avoidance holes required for electroplating or spraying processes.	The aperture and pore size are not controlled, but there must be no shape variation
7	Layer shelf/panel waist hole	Waist hole for non fitting surfaces of shelves/laminates used for placing equipment.	Regardless of control
8	Door mesh hole	Round or hexagonal holes on doors or structural components that require heat dissipation.	The mesh size is based on our existing mold, and the mesh layout is not controlled, but the ventilation rate needs to meet the requirements
9	Hinge mounting hole	The structural components that require the installation of hinges should have circular through holes.	Strict control is required
10	Axis pin hole	Round through holes that require welding or installation.	according to the drawing requirements
11	SR fixed buckle hole	Fixed hole for fitting with SR fixing buckle.	

2、 Remarks:

1. The above standards only apply to products designed by our technical personnel and do not include products with drawings provided by customers.

2. Products from the same batch or order must ensure consistency.

3. Unmarked linear and geometric dimensional tolerances shall be executed according to GB/T1804-M level.